TEST REPORT (WIFI)

Applicant: SHENZHEN WLINK TECHNOLOGY CO., LTD.

Address of Applicant: 2A, F5 Building, TCL International E City, No.1001

Zhongshanyuan Rd., Nanshan Dist., Shenzhen, 518052, China

Manufacturer: SHENZHEN WLINK TECHNOLOGY CO., LTD.

Address of 2A, F5 Building, TCL International E City, No.1001

Manufacturer: Zhongshanyuan Rd., Nanshan Dist., Shenzhen, 518052, China

Equipment Under Test (EUT)

Product Name: Industrial 3G/4G Cellular Router

Model No.: WL-R210

Applicable standards: ETSI EN 300 328 V2.2.2 (2019-07)

Date of sample receipt: September 27, 2021

Date of Test: September 28, 2021-October 09, 2021

Date of report issue: October 09, 2021

Test Result: PASS *

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

CE

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 53

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above.

2 Version

Report No.	Version No.	Date	Description
GTS201903000054E02	00	March 11, 2019	Original
GTS202109000200E02	01	October 09, 2021	Change adapter, address of applicant/ manufacturer; Add telecommunication port; Delete factory; Update the version of standards.
	8		
	1	8 - 8 - 8	

Prepared By:	Jasan Ely Date:	October 09, 2021
	Project Engineer	
Check By:	Date:	October 09, 2021
	Reviewer	

3 Contents

2	2 VERSION	6
2	2 VERSION	2
3	3 CONTENTS	3
4	1 TEST SUMMARY	4
43		
5	5 GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 TEST FACILITY	
	5.4 TEST LOCATION	
	5.5 DESCRIPTION OF SUPPORT UNITS	
	5.6 DEVIATION FROM STANDARDS	
	5.7 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6		
6		
	5 TEST INSTRUMENTS LIST	8
	TEST INSTRUMENTS LIST 7 RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328	10 10
	7.1 TEST ENVIRONMENT AND MODE	10 10 11
	7 RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328	10 10 11
6	7 RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328 7.1 TEST ENVIRONMENT AND MODE	10 10 11 11
	7 RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328 7.1 TEST ENVIRONMENT AND MODE	10111111
	7 RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328 7.1 TEST ENVIRONMENT AND MODE	1011111518
	7 RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328 7.1 TEST ENVIRONMENT AND MODE	1011151818
	7 RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328 7.1 TEST ENVIRONMENT AND MODE	
	RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328 7.1 TEST ENVIRONMENT AND MODE	101115183537
	RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328 7.1 TEST ENVIRONMENT AND MODE	10111518353741
	RADIO TECHNICAL SPECIFICATION IN ETSI EN 300 328 7.1 TEST ENVIRONMENT AND MODE	10111518353741

4 Test Summary

	Radio Spect	rum Matter (RSM)	Part of Tx		
Test	Test Requirement	Test method	Limit/Severity	Uncertainty	Result
RF Output Power	Clause 4.3.2.2	Clause 5.4.2.2	20dBm	±1.5dB	PASS
Power Spectral Density	Clause 4.3.2.3	Clause 5.4.3.2	10dBm/MHz	±3dB	PASS
Duty Cycle, Tx- sequence, Tx-gap	Clause 4.3.2.4	Clause 5.4.2.2.1.3	Clause 4.3.2.4.3	±5 %	N/A
Medium Utilisation (MU) factor	Clause 4.3.2.5	Clause 5.4.2.2.1.4	≤ 10%	±5 %	N/A
Adaptivity	Clause 4.3.2.6	Clause 5.4.6.2	Clause 4.3.2.6.2.2 & Clause 4.3.2.6.3.2 & Clause 4.3.2.6.4.2	& &	PASS
Occupied Channel Bandwidth	Clause 4.3.2.7	Clause 5.4.7.2	Clause 4.3.2.7.3	±5 %	PASS
Transmitter unwanted emissions in the OOB domain	Clause 4.3.2.8	Clause 5.4.8.2	Clause 4.3.2.8.3	±3dB	PASS
Transmitter unwanted emissions in the spurious domain	Clause 4.3.2.9	Clause 5.4.9.2	Clause 4.3.2.9.3	±6dB	PASS
	Radio Spect	rum Matter (RSM)	Part of Rx		
Receiver spurious emissions	Clause 4.3.2.10	Clause 5.4.10.2	Clause 4.3.2.10.3	±6dB	PASS
Receiver Blocking	Clause 4.3.2.11	Clause 5.4.11.2	Clause 4.3.2.11.4	8 6	PASS
Geo-location capability	Clause 4.3.2.12	7 8	88	7 8	N/A

Remark:

The EUT belongs to receiver category 1.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

Temperature (Uncertainty): ±1°C Humidity(Uncertainty): ±5%

Uncertainty: ± 3%(for DC and low frequency voltages)

5 General Information

5.1 General Description of EUT

e de la companya della companya dell	Product Name:	Industrial 3G/4G Cellular Router
8	Model No.:	WL-R210
E S	Operation Frequency:	2412MHz~2472MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2462MHz (802.11n(H40))
e e	Channel numbers:	13 for 802.11b/802.11g/802.11n(HT20) 9 for 802.11n(HT40)
	Channel separation:	5MHz
5	Modulation Technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum(DSSS)
s s	Modulation Technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
	Antenna Type:	External Antenna
50	Antenna gain:	2.0dBi (declare by Applicant)
j)	Power Supply:	Adapter: Model No.: SAW20-120-1500GD Input: AC 100-240V, 50/60Hz, 0.6A Output: DC 12.0V, 1.5A, 18.0W

WIFI Operation Frequency each of channel									
Channel	Channel	Frequency							
1	2412MHz	5	2432MHz	9	2452MHz	13	2472MHz		
2	2417MHz	6	2437MHz	10	2457MHz				
3	2422MHz	7	2442MHz	11	2462MHz	0			
4	2427MHz	8	2447MHz	12	2467MHz				

The EUT operation in above frequency list, and used test software to control the EUT for staying in continuous transmitting and receiving mode. So test frequency is below:

Toot showned	Frequency (MHz)				
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)			
Lowest channel	2412MHz	2422MHz			
Middle channel	2442MHz	2442MHz			
Highest channel	2472MHz	2462MHz			

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
Receiving mode	Keep the EUT in receiving mode.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Mode 802.11b		802.11n(HT20)	802.11n(HT40)	
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps	

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

The EUT has been tested as an independent unit.

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

5.8 Other Information Requested by the Customer

None.

6 Test Instruments List

Rad	iated Emission:	6 - 6 - 6		6, 6		1
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Chamber		9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

RF C	onducted Test:			g g		P. P.
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
\$ 1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022		
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022		

7 Radio Technical Specification in ETSI EN 300 328

7.1 Test Environment and Mode

Test mode:						
Transmitting mode: Keep		Keep the	EUT in transmitting mode with mode	dulation.		
Receiving mode	Keep the		e EUT in receiving mode.			
Operating Environme	ent:					
lt a ma	Normal condition		Extreme condition			
Item			NVHT	NVLT		
Temperature	+25°C		+45°C	0°C		
Humidity	- 65	6	20%-95%			
Atmospheric Pressure:	Š.	8 6	1008 mbar			

Setting	Value	
Modulation	Other	
Adaptive	Yes	
Antenna Gain	2.0dBi	
Nominal Channel Bandwidth	20MHz/40MHz	
DUT Frequency not configurable	No 🧖	
Frequency Low	2412MHz/2422MHz	
Frequency Mid	2442MHz	
Frequency High	2472MHz/2462MHz	

7.2 Transmitter Requirement

7.2.1 RF Output Power

Test Requirement:	ETSI EN 300 328 clause 4.3.2.2
Test Method:	ETSI EN 300 328 clause 5.4.2.2.1.2
Limit:	20dBm
Test setup:	Attenuator & DC Block Power Supply Power sensor
Test procedure:	Step 1:
	Use a fast power sensor suitable for 2,4 GHz and capable of 1 MS/s. Use the following settings: - Sample speed 1 MS/s or faster.
2 2 2	- The samples must represent the power of the signal.
	Measurement duration: For non-adaptive equipment: equal to the observation period defined in
	clauses 4.3.1.3.2 or 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) are captured.
8 8 7 8	For adaptive equipment, to increase the measurement accuracy, a higher number of bursts may be used.
	Step 2:
8 8 7 8	For conducted measurements on devices with one transmit chain:
	-Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.
9 9 9 9	For conducted measurements on devices with multiple transmit chains:
6 8 2 8	-Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports.
	-Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than 500ns.
	-For each individual smpling point(time domain), sum the coincident power samples of all ports and store them. Use these summed samples in all following steps.
	Step 3:
8 9 9 8	Find the start and stop times of each burst in the stored measurement samples.
	The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples in step 2.
	In case of insufficient dynamic range, the value of 30dB may need to be reduced appropriately.
	Step 4:
2 2 2 2	Between the start and stop times of each individual burst calculate the

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	RMS power over the burst using the formula below. Save these P _{burst} values, as well as the start and stop times for each burst.
	$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$
	With "k" being the total number of samples and "n" the actual sample
	number
	Step 5:
	The highest of all P _{burst} values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.
	Step 6:
	Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.
	If applicable, add the additional beamforming gain "Y" in dB.
	If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
	The RF Output Power (P) shall be calculated using the formula below:
	P = A + G + Y
	Step 7:
	This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.
Measurement Record:	Uncertainty: 0.65dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode

Measurement Data

		802.11	1b mode			
Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Result
0 0 0	Lowest	16.25	2.00	18.25	2	O S
Normal	Middle	16.18	2.00	18.18	W	
	Highest	16.22	2.00	18.22	6	
	Lowest	16.18	2.00	18.18		
NVHT	Middle	16.08	2.00	18.08	20	Pass
9 9	Highest	16.12	2.00	18.12		
	Lowest	16.23	2.00	18.23		
NVLT	Middle	16.16	2.00	18.16	8	
	Highest	16.20	2.00	18.20	8	
		802.11	1g mode			
Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Result
9 9.	Lowest	15.76	2.00	17.76	9	6) (4)
Normal	Middle	15.68	2.00	17.68		
	Highest	15.62	2.00	17.62	8	
	Lowest	15.69	2.00	17.69	3	
NVHT	Middle	15.58	2.00	17.58	20	Pass
· · · · · · · · · · · · · · · · · · ·	Highest	15.52	2.00	17.52		
	Lowest	15.74	2.00	17.74	6 6	
NVLT	Middle	15.66	2.00	17.66	8	
9 29 29	Highest	15.60	2.00	17.60		

Page 14 of 53

	No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	802.11n(F	IT20) mode		and the second s	
Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Result
2 2	Lowest	15.64	2.00	17.64	2	0
Normal	Middle	15.54	2.00	17.54		
	Highest	15.53	2.00	17.53	6	
	Lowest	15.57	2.00	17.57	8	
NVHT	Middle	15.44	2.00	17.44	20	Pass
	Highest	15.43	2.00	17.43		
	Lowest	15.62	2.00	17.62	6	
NVLT	Middle	15.52	2.00	17.52	8 4	
	Highest	15.51	2.00	17.51		
		802.11n(F	łT40) mode			
Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Result
	Lowest	12.59	2.00	14.59	29	
Normal	Middle	12.48	2.00	14.48	6	
	Highest	12.42	2.00	14.42	4 4	
	Lowest	12.52	2.00	14.52	10	
NVHT	Middle	12.38	2.00	14.38	20	Pass
	Highest	12.32	2.00	14.32		
	Lowest	12.57	2.00	14.57	68	
NVLT	Middle	12.46	2.00	14.46	19 1	
	Highest	12.40	2.00	14.40	1	

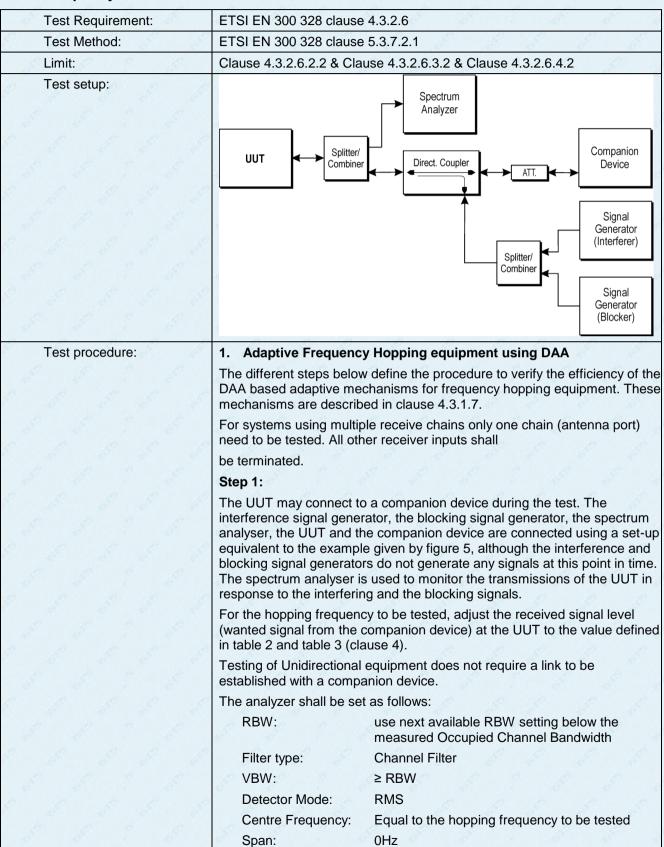
Remark:1>. Volt= Voltage, Temp= Temperature

2>. Antenna Gain=2.0dBi

7.2.2 Power Spectral Density

Test Requirement:	ETSI EN 300 328 clause 4.3.2.3
Test Method:	ETSI EN 300 328 clause 5.4.3.2.1
Limit:	10dBm/MHz
Test setup:	Attenuator & DC block DC block EUT Power Supply Spectrum Analyser
Test procedure:	Step 1:
	Connect the UUT to the spectrum analyser and use the following settings: Start Frequency: 2400 MHz Stop Frequency: 2483.5 MHz Resolution BW: 10 kHz Video BW: 30 kHz Sweep Points: > 8350 For spectrum analysers not supporting this number of sweep points, the frequency band may be segmented. Detector: RMS Trace Mode: Max Hold Sweep time: 10s; the sweep time may be increased further until a value where the sweep time has no impact on the RMS value of the signal
	For non-continuous signals, wait for the trace to stabilize. Save the (trace data) set to a file.
	Step 2:
	For conducted measurements on smart antenna systems using either operating mode 2 or 3 (see clause 5.3.2.2), repeat the measurement for each of the transmit ports. For each sampling point(frequency domain), add up the coincident power values(in mW) for the different transmit chains and use this as the new data set.
	Step 3:
	Add up the values for power for all the samples in the file using the formula below.
	$P_{Sum} = \sum_{n=1}^{k} P_{sample}(n)$
	With "k" being the total number of samples and "n" the actual sample Number.
	Step 4: Normalize the individual values for power(in dBm) so that the sum is equal to the RF output Power (e.i.r.p.) measured in clause 5.4.2 and save the corrected data. The following formulas can be used:

	$C_{Corr} = P_{Sum} - P_{e.i.r.p.}$
8 8 2 8	$P_{Samplecorr}(n) = P_{Sample}(n) - C_{Corr}$
	With"n" being the actual sample number
	Step 5:
	Starting from the first sample P _{samplecorr(n)} (lowest frequency), add up the power(in mW) of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.
	Step 6:
	Shift the start point of the samples added up in step 5 by one sample and repeat the procedure in step 5 (i.e. sample #2 to #101).
	Step 7:
	Repeat step 6 until the end of the data set and record the Power Spectral Density values for each of the 1 MHz segments.
	From all the recorded results, the highest value is the maximum Power Spectral Density for the UUT. This value, which shall comply with the limit given in clause 4.3.2.3.3,shall be recorded in the test report.
Measurement Record:	Uncertainty: 1.31dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode



Measurement Data

	802.11b mode		
Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result
CH 1	6.93	Le Le Le	8 8
CH 7	6.81	10.00	Pass
CH 13	6.76	2 2 2	20 3
	802.11g mode		
Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result
CH 1	3.93	8 8	6 6
CH 7	3.79	10.00	Pass
CH 13	3.75	8 8 8	8 6
	802.11n-HT20 mode		
Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result
CH 1	3.91		29 6
CH 7	3.76	10.00	Pass
CH 13	3.62	8 8	48
	802.11n-HT40 mode		
Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result
CH 3	0.33	2	2 - 2 -
CH 7	0.26	10.00	Pass
CH 11	0.21		

7.2.3 Adaptivity

Sweep time: >Channel Occupancy Time of the UUT. If the

Channel Occupancy Time is non-contiguous (non-LBT based equipment), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread

out.

Trace Mode: Clear/Write

Trigger Mode: Video

Step 2:

Configure the UUT for normal transmissions with a sufficiently high payload to resulting in a minimum transmitter activity ratio(TxOn+TxOff)) of 0.3. Where this is not possible, the UUT shall be configured to the maximum payload possible.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that, for equipment with a dwell time greater than the maximum allowable Channel Occupancy Time, the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clauses 4.3.1.7.2.2 and 4.3.1.7.3.2.

Step 3: Adding the interference signal

An interference signal as defined in clause B.6 is injected centred on the hopping frequency being tested. The Power Spectral Density level(at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clauses 4.3.1.7.2.2 or 4.3.1.7.3.2.

Step 4: Verification of reaction to the interference signal

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected hopping frequency with the interfering signal injected. This may require the spectrum analyser sweep to be triggered by the start of the interfering signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

i) The UUT shall stop transmissions on the hopping frequency being tested.

The UUT is assumed to stop transmissions on this hopping frequency within a period equal to the maximum Channel Occupancy Time defined in clauses 4.3.1.7.2.2 or clause 4.3.1.7.3.2 As stated in clause 4.3.1.7.3.2, the Channel Occupancy Time for non-LBT based frequency hopping systems may be non-contiguous.

ii) For LBT based frequency hopping equipment, apart from Short Control Signalling Transmissions (see iii) below), there shall be no subsequent transmissions on this hopping frequency, as long as the interference signal remains present.

For non-LBT based frequency hopping equipment, apart from Short Control Signalling Transmissions (see iii) below), there shall be no subsequent transmissions on this hopping frequency for a (silent) period defined in clause 4.3.1.7.3.2 step 2. After that, the UUT may have normal transmissions again for the duration of a single Channel Occupancy Time period (which may be non-contiguous). Because the interference signal is still present, another silent period as defined in clause 4.3.1.7.3.2 step 2 needs to be included. This sequence is repeated as long as the interfering signal is present.

In case of overlapping channels, transmissions in adjacent channels may generate transmission bursts on the channel being investigated, however they will have a lower amplitude as on-channel transmissions. Care should be taken to only evaluate the on-channel transmissions.

The Time Domain Power Option of the analyser may be used to measure the RMS power of the individual bursts to distinguish onchannel transmissions from transmissions on adjacent channels. In some cases, the RBW may need to be reduced.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be 60s or more.

iii) The UUT may continue to have Short Control Signalling Transmissions on the hopping frequency being tested while the interference signal is present. These transmissions shall comply with the limits defined in clause 4.3.1.7.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

iv) Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the unwanted signal

With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 2 of clause 4.3.1.7.2.2, step 6 or table 3 of clause 4.3.1.7.3.2, step 6.

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected hopping frequency. This may require the spectrum analyser sweep to be triggered by the start of the unwanted signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

 The UUT shall not resume normal transmissions on the hopping frequecy being tested as long as both the interference and unwanted signals remain present

To verify that the UUT is not resuming normal transmissions as long as the interference and blocking signals are present, the monitoring time may need to be 60s or more. If transmissions are detected during this period, the settings of the analyser may need to be adjusted to allow an accurate assessment to verify the transmissions comply with the limits for Short Control Signalling Transmissions.

ii) The UUT may continue to have Short Control Signalling
Transmissions on the hopping frequency being tested while the
interference and unwanted signal are present. These
transmissions shall comply with the limits defined in clause
4.3.1.7.4.2

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed(e.g.sweep time).

Step 6: Removing the interference and unwanted signal

On removal of the interference and unwanted signal, the UUT is allowed to re-include any channel previously marked as unavailable; however, for non-LBT based equipment, it shall be verified that this shall only be done after the period defined in clause 4.3.1.7.3.2 point 2.

Step 7:

The steps 2 to 6 shall be repeated for each of the hopping frequencies to be tested.

2. Non-LBT based adaptive equipment using modulations other than FHSS

The different steps below define the procedure to verify the efficiency of the non-LBT based DAA adaptive mechanism of equipment using wide band modulations other than FHSS.

For systems using multiple receive chains only one chain (antenna port) need to be tested. All other receiver inputs shall be terminated.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Step 1:

The UUT shall connect to a companion device during the test. The interference signal generator, the uwanted signal generator, the spectrum analyser, the UUT and the companion device are connected using a set-up equivalent to the example given by figure 5 although the interference and unwanted signal generator do not generate any signals at this point in time. The spectrum analyser is used to monitor the transmissions of the UUT in response to the interfering and the unwanted signals.

Adjust the received signal level (wanted signal from the companion device) at the UUT to the value defined in table table 9 (clause 4.3.2.6.2.2).

Testing of Unidirectional equipment does not require a link to be established with a companion device.

The analyzer shall be set as follows:

RBW: ≥ Occupied Channel Bandwidth (if the analyser

does not support this setting, the highest

available setting s hall be used)

VBW: $3 \times RBW$ (if the analyser does not support this

setting, the highest available setting shall be

used)

Detector Mode: RMS

Centre Frequency: Equal to the hopping frequency to be tested

Span: 0Hz

Sweep time: > Channel Occupancy Time of the UUT

Trace Mode: Clear/Write

Trigger Mode: Video

Step 2:

Configure the UUT for normal transmissions with a sufficiently high payload resulting in a minimum transmitter activity ratio (TxOn+TxOff)) of 0.3 .Where this is not possible , the UUT shall be configured to the maximum payload possible.

Using the procedure defined in clause 5.3.7.2.1.4, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.2.2.

Step 3: Adding the interference signal

An interference signal as defined in clause B.6 is injected centred on the current operating channel of the UUT. The Power Spectral Density level(at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clauses 4.3.2.6.2.2 step 5).

Step 4: Verification of reaction to the interference signal

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel with the interfering signal injected. This may require the spectrum analyser sweep to be triggered bythe start of the interfering signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

 The UUT shall stop transmissions on the current operating channel being tested.

The UUT is assumed to stop transmissions within a period equal to the maximum Channel Occupancy Time defined in clause 4.3.2.6.2.2 step 4.

ii) Apart from Short Control Signalling Transmissions (see iii) below),

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

there shall be no subsequent transmissions on this operating channel for a (silent) period defined in clause 4.3.2.6.2.2 step 2. After that, the UUT may have normal transmissions again for the duration of a single Channel Occupancy Time period. Because the interference signal is still present, another silent period as defined in clause 4.3.2.6.2.2 step 2 needs to be included. This sequence is repeated as long as the interfering signal is present.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be 60 s or more.

iii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interference signal is present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

iv) Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the unwanted signal

With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 9 of clause 4.3.2.6.2.2.

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel. This may require the spectrum analyser sweep to be triggered by the start of the unwanted signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

i) The UUT shall not resume normal transmissions on the current operating channel as long as both the interference and blocking signals remain present.

To verify that the UUT is not resuming normal transmissions as long as the interference and blocking signals are present, the monitoring time may need to be 60 s or more.

ii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interference and unwanted signals are present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

Step 6: Removing the interference and unwanted signal

On removal of the interference and unwanted signal the UUT is allowed to start transmissions again on this channel however, it shall be verified that this shall only be done after the period defined in clause 4.3.2.6.2.2 step 2.

Step 7

The steps 2 to 6 shall be repeated for each of the frequencies to be tested.

3. LBT based adaptive equipment using modulations other than FHSS

Step 1 to step 7 below define the procedure to verify the efficiency of the LBT based adaptive mechanism of equipment using wide band modulations other than FHSS. This method can be applied on Load Based Equipment and Frame Based Equipment.

Step 1

The UUT may connect to a companion device during the test. The interference signal generator, the unwanted signal generator, the spectrum analyser, the UUT and the companion device are connected using a set-up equivalent to the example given by figure 5 although the interference and unwanted signal generator do not generate any signals at this point in time.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

The spectrum analyser is used to monitor the transmissions of the UUT in response to the interfering and the unwanted signals.

Adjust the received signal level (wanted signal from the companion device) at the UUT to the value defined in table 10 (clause 4.3.2.6.3.2.2) for Frame Based Equipment or in table 11 (clause 4.3.2.6.3.2.3) for Load Based Equipment.

Testing of Unidirectional equipment does not require a link to be established with a companion device.

The analyzer shall be set as follows:

RBW: ≥ Occupied Channel Bandwidth (if the analyser

does not support this setting, the highest

available setting shall be used)

VBW: 3 x RBW (if the analyser does not support this

setting, the highest available setting shall be

used)

Detector Mode: RMS

Centre Frequency: Equal to the centre frequency of the operating

channel

Span: 0Hz

Sweep time: > maximum Channel Occupancy Time

Trace Mode: Clear Write

Trigger Mode: Video

Step 2:

Configure the UUT for normal transmissions with a sufficiently high payload resulting in a minimum transmitter activity ratio (TxOn / (TxOn + TxOff)) of 0,3. Where this is not possible, the UUT shall be configured to the maximum payload possible.

For Frame Based Equipment, using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.3.2.2 step 3). When measuring the Idle Period of the UUT, it shall not include the transmission time of the companion device. For Load Based equipment, using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period defined in clause 4.3.2.6.3.2.3, step 2 and step 3. When measuring the Idle Period of the UUT, it shall not include the transmission time of the companion device

For the purpose of testing Load Based Equipment referred to in the first paragraph of clause 4.3.2.6.3.2.3 (IEEE 802.11™ [i.3] or IEEE 802.15.4™ [i.4] equipment), the limits to be applied for the minimum Idle Period and the maximum Channel Occupancy Time are the same as defined for other types of Load Based Equipment (see clause 4.3.2.6.3.2.3 step 2) and step 3). The Idle Period is considered to be equal to the CCA or Extended CCA time defined in clause 4.3.2.6.3.2.3 step 1) and step 2).

Step 3: Adding the interference signal

An interference signal as defined in clause B.7 is injected on the current operating channel of the UUT. The power spectral density level (at the input of the UUT) of this interference signal shall be equal to the detection threshold defined in clause 4.3.2.6.3.2.2 step 5) (frame based equipment) or clause 4.3.2.6.3.2.3 step 5) (load based equipment).

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Step 4: Verification of reaction to the interference signal

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel with the interfering signal injected. This may require the spectrum analyser sweep to be triggered by the start of the interfering signal.

Using the procedure defined in clause 5.4.6.2.1.5, it shall be verified that:

 The UUT shall stop transmissions on the current operating channel.

The UUT is assumed to stop transmissions within a period equal to the maximum Channel Occupancy Time defined in clause 4.3.2.6.3.2.2 (frame based equipment) or clause 4.3.2.6.3.2.3 (load based equipment).

ii) Apart from Short Control Signalling Transmissions, there shall be no subsequent transmissions while the interfering signal is present.

To verify that the UUT is not resuming normal transmissions as long as the interference signal is present, the monitoring time may need to be 60 s or more.

iii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering signal is present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

iv) Alternatively, the equipment may switch to a non-adaptive mode.

Step 5: Adding the unwanted signal

With the interfering signal present, a 100 % duty cycle CW signal is inserted as the unwanted signal. The frequency and the level are provided in table 6 of clause 4.3.2.11.3.

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel. This may require the spectrum analyser sweep to be triggered by the start of the unwanted signal.

Using the procedure defined in clause 5.3.7.2.1.4, it shall be verified that:

i) The UUT shall not resume normal transmissions on the current operating channel as long as both the interference and unwanted signals remain present.

To verify that the UUT is not resuming normal transmissions as long as the interference and unwanted signals are present, the monitoring time may need to be 60 s or more.

ii) The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interfering and unwanted signals are present. These transmissions shall comply with the limits defined in clause 4.3.2.6.4.2.

The verification of the Short Control Signalling transmissions may require the analyser settings to be changed (e.g. sweep time).

Step 6: Removing the interference and unwanted signal

On removal of the interference and unwanted signal the UUT is allowed to start transmissions again on this channel however this is not a requirement and therefore does not require testing.

Step 7

The steps 2 to 6 shall be repeated for each of the frequencies to be tested.

4. Generic test procedure for measuring channel/frequency usage

This is a generic test method to evaluate transmissions on the operating (hopping) frequency being investigated. This test is performed as part of the procedures described in clause 5.4.6.2.1.2 to clause 5.4.6.2.1.4.

The test procedure shall be as follows:

Step 1:

The analyzer shall be set as follows:

Centre Frequency: Equal to the hopping frequency or centre

frequency of the channel beinginvestigated

Frequency Span: 0Hz

RBW: ~ 50 % of the Occupied Channel Bandwidth (if

the analyser does not support this setting, the

highest available setting shall be used)

VBW: ≥ RBW (if the analyser does not support this

setting, the highest available setting shall be

used)

Detector Mode: RMS

Sweep time: > the Channel Occupancy Time. It shall be

noted that if the Channel Occupancy Time is non-contiguous (for non-LBT based Frequency Hopping Systems), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread out

Number of sweep points:

The time resolution has to be sufficient to meet the maximum measurement uncertainty of 5 % for the period to be measured. In most cases, the Idle Period is the shortest period to be measured and thereby defining the time resolution. If the Channel Occupancy Time is non-contiguous (non-LBT based Frequency Hopping Systems), there is no Idle Period to be measured and therefore the time resolution can be increased (e.g. to 5 % of the dwell time) to cover the period over which the Channel Occupancy Time is spread out, without resulting in too high a number of sweep points for the analyzer.

EXAMPLE 1: For a Channel Occupancy Time of 60 ms, the minimum Idle Period is 3 ms, hence the minimum time resolution should be $< 150 \mu s$.

EXAMPLE 2: For a Channel Occupancy Time of 2 ms, the minimum Idle Period is 100 μ s, hence the minimum time resolution should be < 5 μ s.

EXAMPLE 3: In case of a system using the non-contiguous Channel Occupancy Time approach (40 ms) and using 79 hopping frequencies with a dwell time of 3,75 ms, the total period over which the Channel Occupancy Time is spread out is 3,2 s. With a time resolution 0,1875 ms (5 % of the dwell time), the minimum number of sweep points is ~ 17 000.

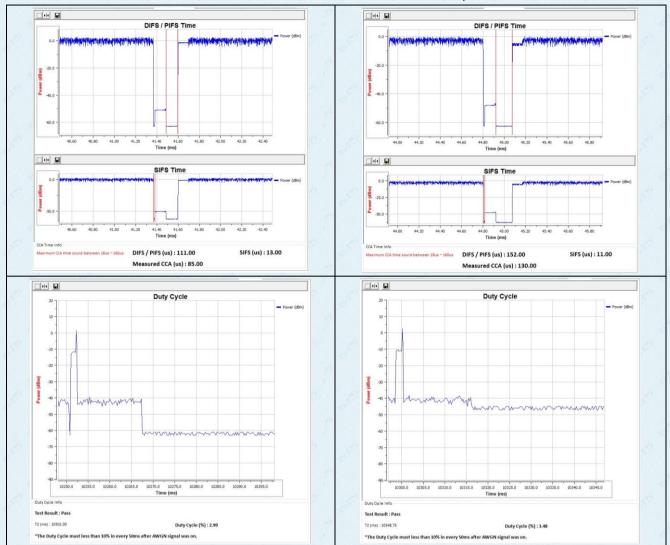
Trace mode: Clear / Write

Trigger: Video

In case of Frequency Hopping Equipment, the data points resulting from transmissions on the hopping frequency being investigated are assumed to have much higher levels compared to data points resulting from transmissions on adjacent hopping frequencies. If a clear determination

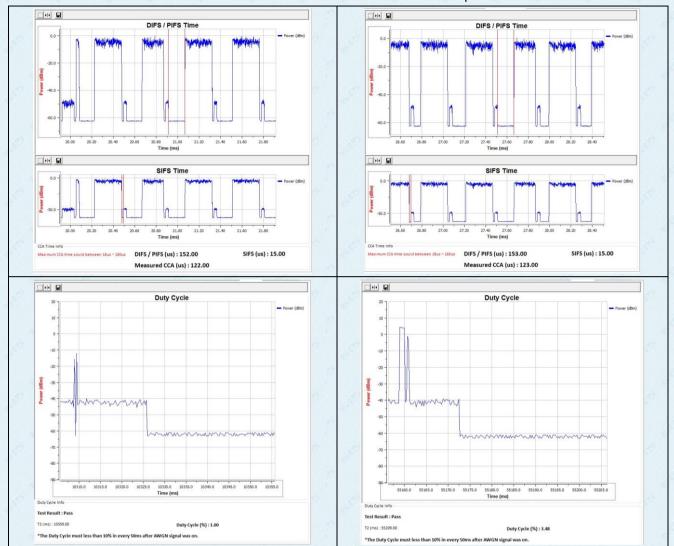
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	between these transmissions is not possible, the RBW in step 1 shall be further reduced. In addition, a channel filter may be used.
	Step 2:
	Save the trace data to a file for further analysis by a computing device using an appropriate software application or program.
	Step 3:
	Indentify the data points related to the frequency being investigated by applying a threshold.
	Count the number of consecutive data points identified as resulting from a single transmission on the frequency being investigated and multiply this number by the time difference between two consecutive data points.
	Repeat this for all the transmissions within the measurement window.
	For measuring idle or silent periods, count the number of consecutive data points identified as resulting from a single transmitter off period on the frequency being investigated and multiply this number by the time difference between two consecutive data points. Repeat this for all the transmitter off periods within the measurement window.
Measurement Record:	Uncertainty: N/A
Test Instruments:	See section 6.0
Test mode:	Normal link mode
Test Result:	Pass

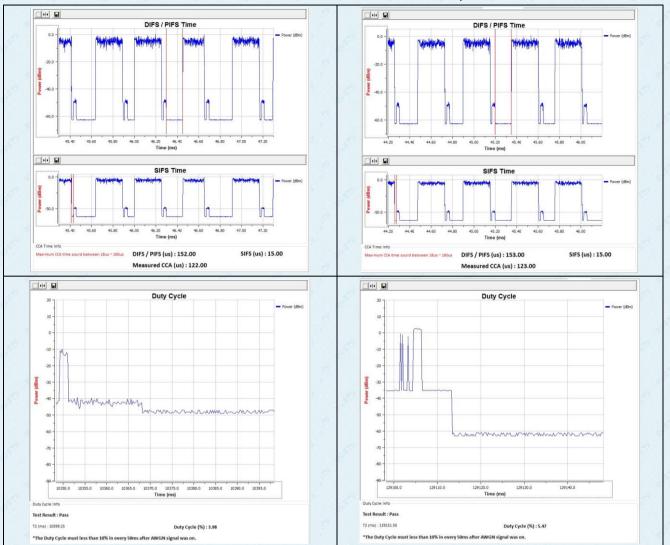

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plots are below:

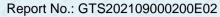
802.11b mode lowest channel	9 6	802.11b mode highest channel
AWGN Interference Level (dBm)	-68.25	AWGN Interference Level (dBm) -68.22
Blocking Interference Level (dBm)	-35	Blocking Interference Level (dBm) -35
AWGN Interference Start Time (ms)	10301.62	AWGN Interference Start Time (ms) 10349.47
Blocking Interference Start Time (ms)	70154.61	Blocking Interference Start Time (ms) 70187.46
Max COT (ms)	1.22	Max COT (ms) 1.51
Idle Time (ms)	0.111	Idle Time (ms) 0.152
Duty Cycle (%)	2.99	Duty Cycle (%) 3.48
-10 - 20		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
COT Time	- Power (dbn)	COT Time
-90.0		25.0 25
78.40 78.60 78.90 79.00 79.20 79.40 79.60 79.90 80.00 80.20 Time (ms)	0 80.40	25.00 25.00 25.00 25.00 25.00 25.00 26.00 26.20 26.40 26.60 26.00 27.00 27.00 27.40 COT Time (ms) Max Channel Occupancy Time (ms): 1.51



802.11g mode lowest channel	0 0	802.11g mode highest channel	20 1
AWGN Interference Level (dBm)	-67.76	AWGN Interference Level (dBm)	-67.62
Blocking Interference Level (dBm)	-35	Blocking Interference Level (dBm)	-35
AWGN Interference Start Time (ms)	10359.62	AWGN Interference Start Time (ms)	10221.63
Blocking Interference Start Time (ms)	70201.62	Blocking Interference Start Time (ms)	70221.63
Max COT (ms)	1.62	Max COT (ms)	1.62
dle Time (ms)	0.152	Idle Time (ms)	0.153
Outy Cycle (%)	1.00	Duty Cycle (%)	3.48
(ag)		20 - (a) 50	
-80 - 20000 40000 50000 80000 100000 120000 Time (ms) Refresh		80 20000 40000 60000 80000 100000 120000 Time (ms)	
20000 40000 60000 100000 120000 Time (ms)	- Power (offen)	80 - 20000 40000 50000 100000 120000 Time (ms)	Power (dbm)



302.11n(HT20) mode lowest chann	el 🥖 📗	802.11n(HT20) mode highest chann	el 🦽 💪	
AWGN Interference Level (dBm)	-67.64	AWGN Interference Level (dBm)	-67.53	
Blocking Interference Level (dBm)	-35	Blocking Interference Level (dBm)	-35	
AWGN Interference Start Time (ms)	10399.47	AWGN Interference Start Time (ms)	10278.63	
Blocking Interference Start Time (ms)	70032.36231.49	Blocking Interference Start Time (ms) 70278.63		
Max COT (ms)	2.03	Max COT (ms)	0.25	
dle Time (ms)	0.152	Idle Time (ms)	0.153	
Outy Cycle (%)	3.98	Duty Cycle (%)	5.47	
-0 - (We Not) - (CW OH - CW OH	100.	-10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
-10.0 -	- Power (dbin)	COT Time	Power (dbm)	
-50.0			1	
14	00 90.50	41.00 41.00 41.00 41.50 41.50 41.50 41.50 42.00 42.00	2.20 42.30	




Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 32 of 53

	802.11n(HT40) mode highest channe	el
-64.59	AWGN Interference Level (dBm)	-64.42
-35	Blocking Interference Level (dBm)	-35
10419.62	AWGN Interference Start Time (ms)	10320.63
70258.61		
2.03	Max COT (ms)	2.03
0.152	Idle Time (ms)	0.153
1.99	Duty Cycle (%)	0.00
	-10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
Power (allow)	-5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0	Power (dlin)
	-90.0 15.00 15.50 16.00 16.50 17.00	17.50
	-35 10419.62 70258.61 2.03 0.152 1.99 Power (dim) SA Power	AWGN Interference Level (dBm) 10419.62 AWGN Interference Start Time (ms) 70258.61 Blocking Interference Start Time (ms) 2.03 Max COT (ms) 0.152 Idle Time (ms) 1.99 Duty Cycle (%) Adaptivity Measurement Start Time (ms) 1.99 COT Time COT Time COT Time

Note:

During the test, the signal observed on the channel being investigated is the Short Control Signalling Transmissions.

7.2.4 Occupied Channel Bandwidth

Test Requirement:	ETSI EN 300 328 clause 4.3.2.7				
Limit:	The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band 2400MHz ~ 2483.5MHz. In addition, for non-adaptive equipment using wide band modulations other than FHSS and with e.i.r.p. greater than10 dBm, the occupied channel bandwidth shall be less than 20 MHz.				
Test setup:	Attenuator & DC block BUT Power Supply Spectrum Analyser				
Test Precedure:	Step 1:				
	Connect the UUT to the spectrum analyser and use the following settings:				
	Centre Frequency: The centre frequency of the channel under test				
	Resolution BW: ~ 1 % of the span without going below 1 %				
	Video BW: 3 x RBW				
	Frequency Span 2 x Nominal Channel Bandwidth				
	Detector Mode: RMS				
	Trace mode: Max Hold				
	Sweep time: 1 s				
	Step 2:				
	Wait for the trace to stabilize.				
	Find the peak value of the trace and place the analyser marker on this peak.				
	Step 3: 8 8 8 8 8 8 8				
	Use the 99 % bandwidth function of the spectrum analyser to measurable the Occupied Channel Bandwidth of the UUT. This value shall be recorded.				
	Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.				
Test Instruments:	See section 6.0				
Test mode:	Transmitting mode				

Measurement Data:

		80	02.11b		
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F _L /F _H (MHz)	Limit	Result
Lowest	12.963	20	2405.49	2400MHz ~	Pass
Highest	12.855	20	2478.41	2483.5MHz	Pass
		80	02.11g		
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F _L /F _H (MHz)	Limit	Result
Lowest	16.500	20	2403.74	2400MHz ~	Pass
Highest	16.514	20	2480.25	2483.5MHz	Pass
		802.	11n(H20)		
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F _L /F _H (MHz)	Limit	Result
Lowest	17.668	20	2403.15	2400MHz ~ 2483.5MHz	Pass
Highest	17.684	20	2480.83		Pass
		802.	11n(H40)		
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F _L /F _H (MHz)	Limit	Result
Lowest	36.010	40	2403.95	2400MHz ~ 2483.5MHz	Pass
Highest	36.048	40	2479.98		Pass

7.2.5 Transmitter unwanted emissions in the OOB domain

Test Requirement:	ETSI EN 300	ETSI EN 300 328 clause 4.3.2.8					
Test Method:	ETSI EN 300	ETSI EN 300 328 clause 5.4.8.2					
Limit:	outside the a mask in figur Within the ba	allocated bar e 1 and specified ampliance wit	nd, shall not exc in table 1, the C	n the out-of-band beed the values pro- Out-of-band emission Channel Bandwidth	vided by the s are		
	48			23			
	Spurious Domain	Out Of Band Domain	(OOB) Allocated Band	Out Of Band Domain (OOB)	Spurious Doma		
	* * * * * * * * * * * * * * * * * * *	A	*				
	<						
	В						
	С						
	2 400 MHz	2BW 2 400 MHz - BV	V 2 400 MHz 2 483,	5 MHz 2 483,5 MHz + BW 2 483,	→ 5 MHz + 2RW		
	A: -10 dBm/MHz e.i.r.		2 400 11112 2 400,	O INITIZ	J MITIE V EDIV		
	B: -20 dBm/MHz e.i.r.p C: Spurious Domain li).	BW = Occu	pied Channel Bandwidth in MHz or 1 Mi	Hz whichever is greate		
Test setup:		Attenua	ator &				
		ш ось					
	7.00	EUT Power Supply					
	Spectrum Analy	Spectrum Analyser					
	Spectrum Analy	361			20		
Test procedure:	The applicable mask is defined by the measurement results from the tests						
		performed under clause 5.4.7 (Occupied Channel Bandwidth). The Out-of-band emissions within the different horizontal segments of the					
	mask provide step 6 below	ed in figures . This metho	1 and 3 shall be diassumes the s	measured using the spectrum analyser is	step 1 to		
		with the Time Domain Power option.					
	Step 1:	I II IT to the o	poetrum enelve	or and use the follow	ina pottinaa		
			2 484 MHz	er and use the follow	ing settings		
	Span:	requency:	0Hz				
	Resolution	n BW:	1 MHz				
	Filter mo		Channel filter				
	Video BV		3 MHz				
	Detector		RMS				
	Trace Mo		Max Hold				
	Sweep M		Continuous				
	Sweep P	oints:	Sweep Time [s greater] / (1 µs) or 5 000 wh	nichever is		
	Trigger N	Node:	Video trigger				
	NOTE 1:	المارية محمد مرا		ot possible, an exter	nal triagar		

Sweep Time:

>120 % of the duration of the longest burst detected during the measurement of the RF Output Power

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

Adjust the trigger level to select the transmissions with the highest power level.

For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.

Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.

Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.

Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

Step 6:

In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or figure 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.

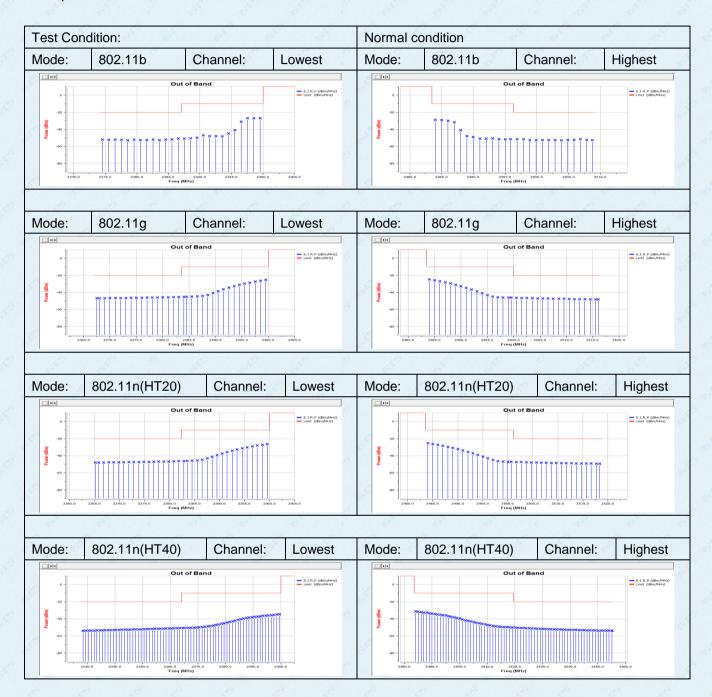
In case of conducted measurements on smart antenna systems

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Report No.:	GTS20210900	00200E02
-------------	-------------	----------


(equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figure 1 or figure 3.
Option 2: the limits provided by the mask given in figure 1 or figure 3 shall be reduced by 10 x log10(A_{ch}) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.
NOTE: A _{ch} refers to the number of active transmit chains.
It shall be recorded whether the equipment complies with the mask provided in figure 1 or figure 3.
Uncertainty: ± 1.5dB
See section 6.0
Transmitting mode
Pass O O O O O

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 39 of 53

Measurement Data:

Test plots at normal condition are followed:

7.2.6 Transmitter unwanted emissions in the spurious domain

Test Requirement:	ETSI EN 300 328 clause 4.3.2.9				
Test Method:	ETSI EN 300 328 clause	5.4.9.2	9 9 9		
Limit:	Frequency Range	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth		
	30 MHz to 47 MHz	-36 dBm	100 kHz		
	47 MHz to 74 MHz	-54 dBm	100 kHz		
	74 MHz to 87.5 MHz	-36 dBm	100 kHz		
	87.5 MHz to 118 MHz	-54 dBm	100 kHz		
	118 MHz to 174 MHz	-36 dBm	100 kHz		
	174 MHz to 230 MHz	-54 dBm	100 kHz		
	230 MHz to 470 MHz	-36 dBm	100 kHz		
	470 MHz to 694 MHz	-54 dBm	100 kHz		
	694 MHz to 1 GHz	-36 dBm	100 kHz		
	1 GHz to 12.75 GHz	-30 dBm	1 MHz		
Test Frequency range:	30MHz to 12.75GHz				
Test setup:	Below 1GHz	3 9 9	9 9		
	(Turntable) Ground Reference	Antenna Tower Antenna Tower Antenna Tower Antenna Tower Controller			
	Above 1GHz	APPRINT			
	AE EUT	Horn Antenna Tower			
	(Turntable) Ground Re Test Receiver	ference Plane Pia- Angular Controllar			
Measurement Record:	6 6 6		Uncertainty: 4.64dB		
Test Instruments:	See section 6.0	2 2 2	2 2		
Test mode:	Transmitting mode	9 9	9 9		

Measurement Data

		802.11b mode		
		The lowest chann	el	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
requericy (wiriz)	polarization	Level(dBm)	Limit (abiii)	rest Nesuit
97.97	Vertical	-70.58	-54.00	
464.14	V	-67.02	-36.00	
4824.00	V	-42.83	-30.00	
7236.00	V	-45.55	-30.00	
9648.00	V	-42.20	-30.00	
12060.00	V	-43.02	-30.00	Pass
180.50	Horizontal	-69.46	-54.00	1 433
652.49	Н	-64.91	-54.00	
4824.00	H	-45.03	-30.00	
7236.00	Н 🖁	-45.74	-30.00	
9648.00	€ H€	-42.38	-30.00	
12060.00	Н	-44.35	-30.00	3
	1	The highest chann	nel	
Frequency (MHz)		Emission	Limit (dBm)	Test Result
	polarization	Level(dBm)		
145.73	Vertical	-72.11	-36.00	
617.44	V	-63.34	-54.00	
4944.00	V	-43.25	-30.00	
7416.00	V	-45.06	-30.00	
9888.00	V	-43.84	-30.00	
12360.00	V	-43.23	-30.00	Pass
257.65	Horizontal	-69.44	-36.00	Fass
821.77	Н	-62.39	-36.00	
4944.00	Н	-44.48	-30.00	
7416.00	€ Н	-45.52	-30.00	
9888.00	Н	-43.46	-30.00	
12360.00	Н 💞	-43.81	-30.00	8 6

		802.11g mode		
		The lowest chann	el	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
Trequency (mriz)	polarization	Level(dBm)	Zimit (dbiii)	Test result
103.67	Vertical	-71.51	-54.00	
381.79	V	-68.18	-36.00	
4824.00	V	-52.22	-30.00	
7236.00	V	-45.87	-30.00	<u> </u>
9648.00	V	-42.60	-30.00	
12060.00	V	-44.60	-30.00	Pass
130.43	Horizontal	-69.63	-36.00	1 400
710.44	AH &	-68.91	-36.00	6
4824.00	8 HS	-51.26	-30.00	
7236.00	AH A	-45.20	-30.00	
9648.00	₿ H\$	-42.70	-30.00	
12060.00	Н	-45.43	-30.00	
	T 82	The highest chann	nel	1
Frequency (MHz)	Spurious Emission		Limit (dBm)	Test Result
	polarization	Level(dBm)		
159.18	Vertical	-70.69	-36.00	
972.23	V	-63.10	-36.00	
4944.00	V	-52.03	-30.00	
7416.00	V	-45.15	-30.00	<u> </u>
9888.00	V	-43.19	-30.00	
12360.00	V	-43.21	-30.00	Pass
127.99	Horizontal	-70.02	-36.00	F dss
780.67	Н	-71.73	-36.00	
4944.00	Н	-51.19	-30.00	
7416.00	H 6	-45.69	-30.00	
9888.00	H	-42.22	-30.00	
12360.00	€H €	-42.14	-30.00	

		802.11n(HT20) mo	de	
		The lowest chann	el	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
Frequency (MHZ)	polarization	Level(dBm)	Lillit (dBill)	Test Result
199.68	Vertical	-69.92	-54.00	<u> </u>
779.58	V	-64.39	-36.00	
4824.00	V	-52.63	-30.00	
7236.00	V	-45.36	-30.00	<u> </u>
9648.00	√ v€	-43.78	-30.00	
12060.00	őv ő	-43.52	-30.00	Pass
208.13	Horizontal	-70.17	-54.00	1 433
724.33	CH &	-62.39	-36.00	<u>d</u> e de d
4824.00	₿ H\$	-52.64	-30.00	<u> </u>
7236.00	AH &	-46.30	-30.00	
9648.00	& H&	-43.60	-30.00	
12060.00	Н	-45.03	-30.00	29 29 2
		The highest chann	nel	
Frequency (MHz)		Emission	Limit (dBm)	Test Result
	polarization	Level(dBm)		
289.18	Vertical	-69.29	-36.00	
913.99	V	-66.10	-36.00	
4944.00	V	-52.22	-30.00	
7416.00	V	-44.38	-30.00	
9888.00	V	-43.30	-30.00	
12360.00	V	-44.10	-30.00	Pass
147.85	Horizontal	-72.19	-36.00	Pass
888.33	Н	-71.60	-36.00	
4944.00	€ н€	-50.83	-30.00	
7416.00	€H €	-46.79	-30.00	<u> </u>
9888.00	H	-43.24	-30.00	
	Н	-45.62	-30.00	

		802.11n(HT40) mo	de	
		The lowest chann	el	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
requericy (writz)	polarization	Level(dBm)	Ellille (d.Dill)	
120.26	Vertical	-69.79	-36.00	
485.96	V	-60.55	-54.00	
4824.00	V	-52.41	-30.00	
7236.00	V	-45.64	-30.00	<u> </u>
9648.00	V	-43.18	-30.00	
12110.00	V	-45.10	-30.00	Pass
157.87	Horizontal	-68.69	-36.00	1 400
708.87	Н	-63.62	-36.00	<u>e</u>
4824.00	& HS	-52.12	-30.00	e e
7236.00	AH &	-45.79	-30.00	
9648.00	& H&	-42.35	-30.00	
12110.00	Н	-45.03	-30.00	
	182	The highest chann	nel	
Frequency (MHz)	Spurious Emission		Limit (dBm)	Test Result
	polarization	Level(dBm)		4 Y 4 Y
122.31	Vertical	-69.49	-36.00	
859.48	V	-62.43	-36.00	
4944.00	V	-52.21	-30.00	
7416.00	V	-46.02	-30.00	
9888.00	V	-42.49	-30.00	
12310.00	V	-44.99	-30.00	Pass
198.47	Horizontal	-67.17	-54.00	rass
614.81	Н	-64.25	-54.00	
4944.00	Н	-50.35	-30.00	
7416.00	H S	-46.40	-30.00	
9888.00	H	-44.19	-30.00	
12310.00	€H €	-46.08	-30.00	

7.3 Receiver Requirement

7.3.1 Spurious Emissions

Test Requirement:	ETSI EN 300 328 clause 4.3.2.10				
Test Method:	ETSI EN 300 328 clause 5.4.10.2				
Limit:	Frequency	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Measurement bandwidth		
	30MHz to 1000 MHz	-57 dBm	100 kHz		
2 2 2 2	1GHz to 12.75GHz	-47 dBm	1 MHz		
Test Frequency range:	30MHz to 12.75GHz	6 6			
Test setup:	Above 1GHz AE EUT Ground Reference Test Receiver Test Receiver	Horn Antenna Tower			
Measurement Record:	2 2 2	· /2 · · /2 · · · ·	Uncertainty: 4.64dB		
Test mode:	Receiving mode				
Test Instruments:	See section 6.0				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 46 of 53

Measurement Data:

		802.11b mode	e	
		The lowest chan	nnel	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
requeries (initiz)	polarization	Level(dBm)	Lillie (dBill)	Test Result
112.33	Vertical	-73.68		
782.10	V	-67.31		8 8
4824.00	V	-66.57		9 E 6
7236.00	V	-60.33	2nW/ -57dBm	8 - 8
9648.00	V	-57.02	below 1GHz,	
12060.00	Ø V Ø	-55.56		Pass
225.62	Horizontal	-73.52	20nW/ -47dBm	2
502.40	H	-66.45	above 1GHz.	
4824.00	Н	-63.43		
7236.00	Ø HØ	-60.62		S S
9648.00	Н	-57.21		
12060.00	<i>∌</i> H <i>∌</i> .	-56.06		
		The highest char	nnel	
Frequency (MHz)	1 (4)	Emission	Limit (dBm)	Test Result
	polarization	Level(dBm)		
94.29	Vertical	-74.34		6 6
608.91	V	-67.32		8
4944.00	V	-64.95		6 ⁹
7416.00	V	-60.07	2nW/ -57dBm	
9888.00	V	-56.87	below 1GHz,	
12360.00	V	-54.66		Pass
176.03	Horizontal	-72.01	20nW/ -47dBm	
526.28	₿ H₿	-66.06	above 1GHz.	8 8
4944.00	H	-64.64		9 E 6
7416.00	S HS	-57.81		
9888.00	€H €	-53.96		
12360.00	& H	-53.83		2 2

		802.11g mode		
		The lowest chan	nel	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
requericy (WITIZ)	polarization	Level(dBm)	Lillit (dbill)	
101.92	Vertical	-72.77		
637.85	V	-68.37		
4944.00	V	-64.84		
7416.00	V	-60.49	2nW/ -57dBm	4
9888.00	V	-56.48	below 1GHz,	8 8
12360.00	V	-54.90		Pass
118.80	Horizontal	-72.40	20nW/ -47dBm	rass
573.60	H &	-68.39	above 1GHz.	
4944.00	H	-63.61		
7416.00	Н	-57.89		
9888.00	S HS	-55.45		
12360.00	Ĥ	-54.63		
		The highest chan	nnel	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
	polarization	Level(dBm)		
139.32	Vertical	-74.22		
647.93	V	-74.67		
4944.00	V	-64.29		
7416.00	V	-59.27	2nW/ -57dBm	
9888.00	V	-55.87	below 1GHz,	
12360.00	V	-54.51		Pass
151.00	Horizontal	-73.29	20nW/ -47dBm	1 433
734.71	Н	-70.07	above 1GHz.	
4944.00	Н	-63.98		
7416.00	Н	-59.19		\$ S 6
9888.00	8 HS	-55.88		
12360.00	SH S	-53.86		8 8

		802.11n(HT20) m	ode	
		The lowest chan	nel	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
r requericy (writz)	polarization	Level(dBm)	Lillit (dbill)	Tost Nesult
122.41	Vertical	-73.00		8 -8
595.14	V	-70.83		\$ S S S S S S S S S S S S S S S S S S S
4824.00	V	-57.98		
7236.00	V	-62.85	2nW/ -57dBm	4 8 s
9648.00	V	-60.51	below 1GHz,	
12060.00	V	-57.33		Pass
129.01	Horizontal	-73.20	20nW/ -47dBm	1 433
731.83	AH &	-65.54	above 1GHz.	
4824.00	₿ HS	-57.45		
7236.00	AH &	-63.34		
9648.00	₿ H₿	-60.19		8 8
12060.00	AH A	-56.64	2 2 2	9 B 1
	187	The highest chan	nel	1 82 2 2
Frequency (MHz)		Emission	Limit (dBm)	Test Result
	polarization	Level(dBm)		4 4 4
236.43	Vertical	-71.62		
911.61	V	-68.70		
4944.00	V	-65.44		0 0
7416.00	V	-62.09	2nW/ -57dBm	9 9
9888.00	V	-58.74	below 1GHz,	6 6 9 9
12360.00	V	-56.17		Pass
324.01	Horizontal	-68.18	20nW/ -47dBm	
925.13	Н	-64.95	above 1GHz.	
4944.00	Н	-63.61		8
7416.00	€H €	-59.16		6
9888.00	н	-56.39		
12360.00	€H €	-55.10	8 8 8	

		802.11n(HT40) m	ode			
		The lowest chan	nel			
Frequency (MHz)	Spurious Emission		Limit (dBm)	Test Result		
rrequericy (writz)	polarization	Level(dBm)	Lillit (dbill)	rest Result		
119.95	Vertical	-70.39				
777.86	V	-73.84				
4844.00	V	-65.27				
7266.00	V	-59.16	2nW/ -57dBm			
9688.00	V	-55.70	below 1GHz,	Pass		
12110.00	V	-54.95				
170.27	Horizontal	-69.58	20nW/ -47dBm			
885.33	Н	-73.40	above 1GHz.			
4844.00	₿ HS	-63.61				
7266.00	AH &	-59.93		e e e		
9688.00	₿ H\$	-56.65		8 8		
12110.00	2110.00 H -54.78		2 2 2	2 2		
	187	The highest chan	nnel			
Frequency (MHz)	Spurious Emission		Limit (dBm)	Test Result		
	polarization	Level(dBm)		4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		
311.55	Vertical	-71.39				
633.13	V	-73.64				
4924.00	V	-64.95				
7386.00	V	-60.03	2nW/ -57dBm			
9848.00	V	-56.94	below 1GHz,	6 6		
12310.00	V	-54.98		Pass		
370.06	Horizontal	-69.95	20nW/ -47dBm			
643.36	Н	-73.79	above 1GHz.			
4924.00	Н	-64.30				
7386.00	€H €	-58.91		8		
9848.00	Н	-55.91				
12310.00	€H €	-54.65		8 6 6		

7.3.2 Receiver Blocking

AT 187 87 87	ETSI EN 300 328 clause 4.3	A07					
Test Method:	ETSI EN 300 328 clause 5.4		11.2.				
Limit:	While maintaining the minimud. 4.3.1.12.3, the blocking level equal to or greater than the licategory provided in table 6,	s at specified imits defined table 7 or tab	frequency of for the applicable 8.	fsets shall be able receiver			
		Table 6: Receiver Blocking parameters for Receiver Category 1 equipment					
	Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal			
	(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504					
	(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	cw			
	NOTE 1: OCBW is in Hz. NOTE 2: In case of radiated measthe wanted signal from to test may be performed to the minimum level of war	surements using a the companion de using a wanted sig anted signal requi	vice cannot be de gnal up to P _{min} + 2 red to meet the mi	termined, a relative 26 dB where P _{min} is inimum performance			
	NOTE 3: In case of radiated meas the wanted signal from t test may be performed u	criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P _{min} + 20 dB where P _{min} is the minimum level of wanted signal required to meet the minimum performance.					
	NOTE 4: The level specified in cla NOTE 4: The level specified is the antenna assembly gain. be corrected for the (in-be) measurements, this leve the UUT antenna with th clause 5.4.3.2.2.	use 4.3.1.12.3 in e level at the UUT In case of conductional) antenna asset is equivalent to a	the absence of an receiver input ass cted measuremen sembly gain (G). In a power flux densi	y blocking signal. suming a 0 dBi ts, this level has to n case of radiated ity (PFD) in front of			
	Table 7: Receiver Blocking	g parameters re	eceiver Catego	ry 2 equipment			
	Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	m Blocking signal frequency (MHz)	signal power	Type of blocking signal			
	(-139 dBm + 10 × log ₁₀ (OCBW) + 10						
	or (-74 dBm + 10 dB) whichever is I (see note 2)	2 300 -34 2 584		CW			
	NOTE 1: OCBW is in Hz. NOTE 2: In case of radiated measu wanted signal from the co	mpanion device o	annot be determin	ned, a relative test			
	may be performed using a	a wanted signal u	0 10 P _{min} + 20 ub	where I min is the			

	Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal	
	(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584		CW	
	NOTE 1: OCBW is in Hz. NOTE 2: In case of radiated measurement wanted signal from the compan may be performed using a wanted minimum level of wanted signal criteria as defined in clause 4.3. NOTE 3: The level specified is the level assembly gain. In case of conductor the (in-band) antenna assembly level is equivalent to a powwith the UUT being configured/gates.	on device canned signal up to required to me 1.12.3 in the abit the UUT recelected measurenably gain (G). In the flux density (I	not be determined P _{min} + 30 dB whet the minimum posence of any bloiver input assuminents, this level hacese of radiated PFD) in front of the	d, a relative the test ere P _{min} is the performance pocking signal. In a 0 dBi antennance to be corrected in measurements, the UUT antenna	
Test setup:	Variable attenuator step size ≤ 1 dB Signalling Unit or Companion Device Blocking Signal Source Variable attenuator step size ≤ 1 dB Splitta Combin		ATT	Performance Monitoring Device UUT	
Measurement Record:		g g	7	Uncertainty: N	
Test Instruments:	See section 6.0	- 4		44	

Measurement Data:

Receiver Category	Test Channel	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	PER (%)	Limit (%)	Result
		-78	2380		6.9	10	Pass
			2504		4.4	10	Pass
		9 9	2300	6	4.3	10	Pass
	Lowest	70	2330	-34	3.2	10	Pass
	Lowest		2360		4.3	10	Pass
		-76	2524		5.4	10	Pass
			2584		6.1	10	Pass
1			2674		3.6	10	Pass
631		70	2380		1.9	10	Pass
	8 8	-78	2504	St. St.	4.1	10	Pass
	4 4	-76	2300		2.5	10	Pass
	Highest		2330		5.3	10	Pass
			2360		5.4	10	Pass
			2524		2.5	10	Pass
		8 8 6	2584	8	5.6	10	Pass
		6 6	2674	6 6	4.4	10	Pass

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

8 Test setup photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----