

Global United Technology Services Co., Ltd.

Report No.: GTS201807000209E04

SPECTRUM REPORT

Applicant: SHENZHEN WLINK TECHNOLOGY CO., LIMITED

319, YiBen Electronic Business Building, NO.1063 ChaGuang **Address of Applicant:**

Road, XiLi, NanShan District, ShenZhen, China

SHENZHEN WLINK TECHNOLOGY CO., LIMITED Manufacturer/Factory:

Address of 319, YiBen Electronic Business Building, NO.1063 ChaGuang

Road, XiLi, NanShan District, ShenZhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Industrial 3G/4G Router

Model No.: WL-G510

ETSI EN 301 893 V2.1.1 (2017-05) **Applicable standards:**

Date of sample receipt: July 27, 2018

Date of Test: July 28-August 05, 2018

Date of report issue: August 06, 2018

PASS * Test Result:

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above.

2 Version

Version No.	Date	Description
00	August 06, 2018	Original

Prepared By:	Bill. Yvan	Date:	August 06, 2018
	Project Engineer		
Check By:	Andy www.	Date:	August 06, 2018

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST FACILITY	
	5.3 TEST LOCATION	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.6 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.7 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TEST INSTRUMENTS LIST	8
7	RADIO TECHNICAL REQUIREMENTS SPECIFICATION IN EN 301893	9
	7.1 TEST ENVIRONMENT AND MODE	
	7.2 TRANSMITTER REQUIREMENT	10
	7.2.1 Nominal Centre frequencies	10
	7.2.2 Occupied Channel Bandwidth	12
	7.2.3 RF output power	
	7.2.4 Power Density	
	7.2.5 Transmitter unwanted emissions outside 5GHz RLAN band	
	7.2.6 Transmitter unwanted emissions within 5GHz RLAN band	
	7.3 RECEIVER REQUIREMENTS	
	7.3.1 Receiver Spurious emissions	
	7.3.2 Receiver Blocking	
	7.4 ADAPTIVITY (CHANNEL ACCESS MECHANISM)	
В	TEST SETUP PHOTO	44
9	FUT CONSTRUCTIONAL DETAILS	44

4 Test Summary

	Radio Spectrum Matter (RSM) Part of Transmitter							
Test	Test Requirement	Test method	Limit/Severity	Uncertainty	Result			
Nominal Centre Frequency	EN 301 893 clause 4.2.1	EN 301 893 clause 5.4.2.2.1	20ppm	±1×10 ⁻⁶	Pass			
Occupied Channel Bandwidth	EN 301 893 clause 4.2.2	EN 301 893 clause 5.4.3.2.1	80% and 100% of the declared nominal bandwidth	±1×10 ⁻⁶	Pass			
Equivalent Isotropically Radiated Power	EN 301 893 clause 4.2.3.1.1	EN 301 893 clause 5.4.4.2.1.2	Table 2 & Table 3	±1,5 dB	Pass			
Power density	EN 301 893 clause 4.2.3.1.3	EN 301 893 clause 5.4.4.2.1.3	Table 2	±1,5 dB	Pass			
Transmitter Unwanted Emissions Outside the 5GHz RLAN Band	EN 301 893 clause 4.2.4.1	EN 301 893 clause 5.4.5.2.2	Table 4	± 6 dB	Pass			
Transmitter Unwanted Emissions Within the 5GHz RLAN Band	EN 301 893 clause 4.2.4.2	EN 301 893 clause 5.4.6.2.1	Figure 1	± 1.5 dB	Pass			
Dynamic Frequency Selection (DFS)	EN 301 893 clause 4.2.6	EN 301 893 clause 5.4.8.2	N/A		N/A			
Adaptivity (Channel Access Mechanism)	EN 301 893 clause 4.2.7	EN 301 893 clause 5.4.9.3	Clause 4.2.7.3.2	N/A	Pass			
	Radio Spectru	ım Matter (RSM) Paı	rt of Receiver					
Receiver spurious emissions	EN 301 893 clause 4.2.5	EN 301 893 clause 5.4.7.2.2	<2nW <1GHz, <20nW >1GHz	± 6dB	Pass			
Receive Blocking	EN 301 893 clause 4.2.8	EN 301 893 clause 5.4.10	Table 9	N/A	Pass			
Geo-location capability	EN 301 893 clause 4.2.10	N/A	N/A	N/A	N/A			

Remark:

Temperature (Uncertainty): ±1°C Humidity(Uncertainty): ±5%

5 General Information

5.1 General Description of EUT

Product Name:	Industrial 3G/4G Router
Model No.:	WL-G510
Operation Frequency:	5180MHz ~ 5240MHz for 802.11a/802.11n(HT20)/802.11ac(HT20);
	5190MHz ~ 5230MHz for 802.11n(HT40)/802.11ac(HT40)
	5210MHz for 802.11ac(HT80)
Channel numbers:	4 channels for 802.11a/802.11n(HT20)/802.11ac(HT20);
	2 channels for 802.11n(HT40)/802.11ac(HT40)
	1 channel for 802.11ac(HT80)
Channel separation:	20MHz for 802.11a/802.11n(HT20)
	40MHz for 802.11n(HT40)
	80MHz for 802.11ac(HT80)
Modulation technology:	802.11a/n/ac: OFDM
Antenna Type:	External antenna
Antenna gain:	Main Antenna: 3.00dBi (Max.), for TX/RX (WIFI) Aux Antenna: 3.00dBi(Max.), for TX/RX (WIFI)
Directional Gain	3.00+10log(2)=6.01dBi for MIMO 3.00dBi for SISO
Power supply:	Adapter: Model: TS-A018-120015EJ Input: AC 100-240V, 50/60Hz, 0.6A Output: DC 12V, 1.5A

Channel List	Channel List						
802.11a, 802	2.11n(HT20), 8	02.11ac(HT20))				
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
36	5180	40	5200	44	5220	48	5240
802.11n(HT40), 802.11ac(HT40)							
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
38	5190	46	5230				
802.11ac(HT	80)						
Channel Frequency Channel Frequency Channel Frequency No. (MHz) No. (MHz) No. (MHz) No. (MHz)							
39	39 5210						

5.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016

5.3 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Deviation from Standards

None.

5.6 Abnormalities from Standard Conditions

None.

5.7 Other Information Requested by the Customer

None.

6 Test Instruments List

Radi	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019			
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019			
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019			
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019			
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019			
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019			

7 Radio Technical Requirements Specification in EN 301893

7.1 Test Environment and Mode

Test mode:				
Transmitting mode:	Keep the EUT in transmitt	ing mode with modulation.		
Receiving mode	Keep the EUT in receiving	mode.		
Operating Environme	nt:			
Extreme condition				
ltem	Normal condition	NVHT	NVLT	
Temperature	+25°C	+45°C	0°C	
Humidity		20%-95%		
Atmospheric Pressure:		1008 mbar		

7.2 Transmitter requirement

7.2.1 Nominal Centre frequencies

Test Requirement:	EN 301 893 clause 4.2.1			
Test Method:	EN 301 893 clause 5.4.2.2.1			
Limit:	fc±20ppm			
Test setup: Test procedure:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane 1. The UUT shall be connected to spectrum analyser.			
·	 The settings of the spectrum analyser shall be adjusted to optimize the instruments frequency accuracy. Max Hold shall be selected and the centre frequency adjusted to that of the UUT. The peak value of the power envelope shall be measured and noted. The span shall be reduced and the marker moved in a positive frequency increment until the upper, (relative to the centre frequency), -10 dBc point is reached. This value shall be noted as f1. 			
	 5. The marker shall then be moved in a negative frequency increment until the lower, (relative to the centre frequency), -10 dBc point is reached. This value shall be noted as f2. 6. The centre frequency is calculated as (f1 + f2) / 2. 			
Test mode:	Keep the EUT in transmitting with un-modulation.			
Test Instruments:	Refer to section 6.0 for details			
Measurement Record:	Uncertainty: ± 1 x 10 ⁻⁶			

Measurement Data

Mode:			802.11a			
	onditions	Channel (MHz)	Measured Frequency(MHz)	Drift(ppm)	Limit	Result
Volt (V)	Temp(°C)	5400	,	4.00	(ppm)	
	VNT	5180	5180.0071	1.38		
	VHT	5180	5180.0697	13.45		_
	VHT	5180	5179.9243	-14.62	±20	Pass
	VLT	5180	5179.9107	-17.23		
L'	VLT	5180	5179.9590	-7.92		
Mode:			802.11n(H	Г20)	T	T
Test co	onditions	Channel (MHz)	Measured	Drift(ppm)	Limit	Result
Volt (V)	Temp(°C)	Ondrinor (Wir 12)	Frequency(MHz)	Втт(рртт)	(ppm)	rtoodit
N'	VNT	5180	5180.0385	7.43		
H	VHT	5180	5180.0177	3.41		
L١	VHT	5180	5179.9520	-9.26	±20	Pass
H	VLT	5180	5179.9277	-13.96		
Ľ	VLT	5180	5179.9829	-3.30		
Mode:			802.11n(H	Γ40)		
Test co	onditions Temp(°C)	Channel (MHz)	Measured Frequency(MHz)	Drift(ppm)	Limit (ppm)	Result
, ,	VNT	5190	5189.9401	-11.55		
Η'	VHT	5190	5190.0595	11.46		
L\	VHT	5190	5190.0623	12.00	±20	Pass
H	VLT	5190	5189.9228	-14.88		
Ľ	VLT	5190	5189.9920	-1.54		
Mode:			802.11ac(H	IT40)	L	L
Test co	onditions		Measured		Limit	
Volt (V)	Temp(°C)	Channel (MHz)	Frequency(MHz)	Drift(ppm)	(ppm)	Result
N'	VNT	5210	5209.9892	-2.06		
'H	VHT	5210	5209.9959	-0.79		
LVHT		5210	5209.9511	-9.40	±20	Pass
H	VLT	5210	5210.0880	16.90		
L'	VLT	5210	5210.0688	13.21		

Note: For centre frequencies test, in case of more than 1 channel plan has been declared, testing of these specific requirements need only be performed using one of the declared channel plans. (Refer to EN 301893 V2.1.1 Table 11, Note1)

7.2.2 Occupied Channel Bandwidth

Test Requirement:	EN 301893 clause 4.2.2				
Test Method:	EN 301893 clause 5.4.3.	2.1			
Limit:		% of the declared nominal channel bandwidth			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Temperature Chamber				
		d Reference Plane			
Test procedure:	Step 1: Connect the UUT to t settings: Centre Frequency: Resolution BW: Video BW: Frequency Span:	The centre frequency of the channel under test 100kHz 300kHz 2 × Nominal Bandwidth (e.g. 40 MHz for a 20			
	Sweep Time: > 1 s; for larger Nominal Bandwidths, the sweep time may be increased until a value where the sweep time has no impact on the RMS value of the signal				
	Detector Mode:	RMS			
	Trace mode:	Max Hold			
	Step 2:				
	Wait for the trace to stab	ilize.			
	Step 3:				
	the analyser to avoid the	er envelope is sufficiently above the noise floor of the noise signals left and right from the power to account by this measurement.			
	Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.				
	The measurement described in step 1 to step 3 above shall be repeated in case of simultaneous transmissions in non-adjacent channels.				
Test mode:	Keep the EUT in transmi	tting with modulation.			
Test Instruments:	Refer to section 6.0 for d	etails			

Measurement Record: Uncertainty: ± 1 x 10⁻⁶

Measurement Data

Main antenna:

Thair arterna						
Mode:			802.11	a(HT20)		
Frequency (MHz)	Occupied Channel Bandwidth (MHz)	Nominal Channel Bandwidth (MHz)	Limit (MHz)	Occupied Channel Bandwidth (%)	Limit (%)	Result
5180.00	16.78			83.90		
5200.00	16.63	20	16~20	83.15	80 - 100	Pass
5240.00	16.33			81.65		

Aux antenna:

Mode:				802.11a(HT20)			
Frequency (MHz)	Occupied Channel Bandwidth (MHz)	Nominal Channel Bandwidth (MHz)	Limit (MHz)	Occupied Channel Bandwidth (%)	Limit (%)	Result	
5180.00	16.57			82.85			
5200.00	16.59	20	16~20	82.95	80 - 100	Pass	
5240.00	16.21			81.05			

MIMO:

Mode:			802.11	lac(HT20)		
Frequency (MHz)	Occupied Channel Bandwidth (MHz)	Nominal Channel Bandwidth (MHz)	Limit (MHz)	Occupied Channel Bandwidth (%)	Limit (%)	Result
5180.00	17.63			88.15		
5200.00	17.58	20	16~20	87.90	80 - 100	Pass
5240.00	17.66			88.30		
Mode:			802.11	lac(HT40)		
Frequency (MHz)	Occupied Channel Bandwidth (MHz)	Nominal Channel Bandwidth (MHz)	Limit (MHz)	Occupied Channel Bandwidth (%)	Limit (%)	Result
5190.00	35.79	40	22.40	89.48	90 100	Door
5230.00	36.23	40	32~40	90.57	80 - 100	Pass
Mode:			802.11	In(HT40)		
Frequency (MHz)	Occupied Channel Bandwidth (MHz)	Nominal Channel Bandwidth (MHz)	Limit (MHz)	Occupied Channel Bandwidth (%)	Limit (%)	Result
5190.00	36.36	40	32~40	90.90	80 - 100	Daga
5230.00	36.48	40	32~40	91.20	80 - 100	Pass
Mode: 802.11ac(HT80)						
Frequency (MHz)	Occupied Channel Bandwidth (MHz)	Nominal Channel Bandwidth (MHz)	Limit (MHz)	Occupied Channel Bandwidth (%)	Limit (%)	Result
5210	75.96	80	64~80	94.95	80 - 100	Pass

7.2.3 RF output power

power meter with a thermocouple detector or an equivalent t and with an integration period that exceeds the repetition per				
Test setup: Spectrum Analyzer				
Spectrum Analyzer Non-Conducted Table Temperature Chamber 1>. The RF output power shall be determined using a wideband I power meter with a thermocouple detector or an equivalent t and with an integration period that exceeds the repetition period the repetition period that exceeds the repetit				
power meter with a thermocouple detector or an equivalent t and with an integration period that exceeds the repetition per				
noted as "A" (in dBm). 2>. In case of conducted measurements on smart antenna system operating in a mode with multiple transmit chains active simultaneously, the output power of each transmit chain shall measured separately to calculate the total power (value "A" in for the EUT. 3>. The RF output power at the highest power level P _H (e.i.r.p.) so calculated from the above measured power output A (in dBm observed duty cycle x, the stated antenna gain "G" in dBi and applicable the beamforming gain "Y" in dB, according to the finded below. This value shall be recorded in the test report. If more one antenna assembly is intended for this power setting or T	 1>. The RF output power shall be determined using a wideband RF power meter with a thermocouple detector or an equivalent thereof and with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be noted as "A" (in dBm). 2>. In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the output power of each transmit chain shall be measured separately to calculate the total power (value "A" in dBm) for the EUT. 3>. The RF output power at the highest power level P_H (e.i.r.p.) shall be calculated from the above measured power output A (in dBm), the observed duty cycle x, the stated antenna gain "G" in dBi and if applicable the beamforming gain "Y" in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting or TPC range, the gain of the antenna assembly with the highest gain shall 			
4>. Repeated the test in extreme test conditions.				
Test mode: Keep the EUT in transmitting with modulation.				
Test Instruments: Refer to section 6.0 for details				
Measurement Record: Uncertainty: ±				

Measurement Data

Main antenna:

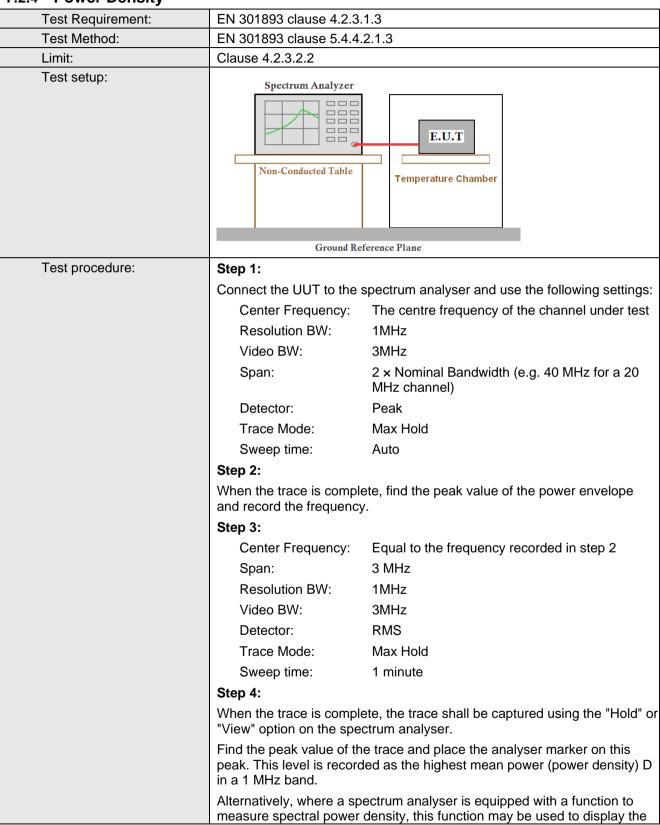
Mode:				802.11a(HT20)		
Test conditions		Frequency	Measured	EIRP (dBm)	Limit (dPm)	Popult
Volt (V)	Temp (°C)	(MHz)	Power (dBm)	Bm) EIRP (dBIII)	Limit (dBm)	Result
N/	/NT	5180	8.77	11.85	23.00	
H	/HT	5180	8.27	11.35	23.00	
L\	/HT	5180	8.65	11.73	23.00	Pass
HVLT		5180	8.77	11.85	23.00	
LV	/LT	5180	8.93	12.01	23.00	

Aux antenna:

Mode: 802.11a(HT20)						
Test conditions		Frequency	Measured	EIDD (dDm)	Limit (dBm)	Popult
Volt (V)	Temp (°C)	(MHz)	Power (dBm)	(dBm) EIRP (dBm)	LIIIII (UDIII)	Result
N/	/NT	5180	8.63	11.71	23.00	
H	/HT	5180	8.41	11.49	23.00	
L\	/HT	5180	8.05	11.13	23.00	Pass
HVLT		5180	8.12	11.20	23.00	
LV	/LT	5180	8.86	11.94	23.00	

MIMO:

Mode:				802.11ac(HT20)			
Test co	remp (°C)	Frequency (MHz)	Measi Power (EIRP (dBm)	Limit (dBm)	Result
N'	VNT	5180	7.3	5	13.44	23.00	
H	VHT	5180	7.4	2	13.51	23.00	
Ľ	VHT	5180	7.5	3	13.62	23.00	Pass
Н	VLT	5180	7.2	2	13.31	23.00	
Ľ	VLT	5180	7.0	8	13.17	23.00	
Mode:				802.1	1n(HT20)		
Test co	onditions Temp (°C)	Frequency (MHz)	Meası Power (EIRP (dBm)	Limit (dBm)	Result
. ,	VNT	5180	6.9	8	13.07	23.00	
H	VHT	5180	7.0	2	13.11	23.00	
L	VHT	5180	7.2	7	13.36	23.00	Pass
Н	VLT	5180	6.8	7	12.96	23.00	
Ľ	VLT	5180	7.3	4	13.43	23.00	
	Mode	e:		802.11 ac(HT40)			
Test co	onditions Temp (°C)	Frequency (MHz)	Measi Power (EIRP (dBm)	Limit (dBm)	Result
N'	VNT	5190	6.7	8	12.87	23.00	
H	VHT	5190	6.8	9	12.98	23.00	
L	VHT	5190	7.1	4	13.23	23.00	Pass
Н	VLT	5190	7.3	3	13.42	23.00	
Ľ	VLT	5190	7.6	4	13.73	23.00	


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Mode:			802.1	1n(HT40)		
Test co	onditions	Frequency Measured		EIRP (dBm)	Limit (dBm)	Result
Volt (V)	Temp (°C)	(MHz)	Power (dBm)	EIRP (UBIII)	Liffiit (dbfff)	Result
N'	VNT	5190	6.45	12.54	23.00	
H'	VHT	5190	6.79	12.88	23.00	
L	√HT	5190	6.35	12.44	23.00	Pass
H	HVLT		6.55	12.64	23.00	
L	LVLT		6.83	12.92	23.00	
Mode:			802.1	1ac(HT80)		
Test co	onditions	Frequency	Measured	FIDD (dDm)	Limit (dDm)	Dogult
Volt (V)	Temp (°C)	(MHz)	Power (dBm)	EIRP (dBm)	Limit (dBm)	Result
N,	VNT	5210	6.34	12.43	23.00	
HVHT		5210	6.76	12.85	23.00	
LVHT		5210	6.33	12.42	23.00	Pass
H	VLT	5210	7.02	13.11	23.00	
L	VLT	5210	6.89	12.98	23.00	

7.2.4 Power Density

	Report No.: GTS201807000209E04
	power density D in dBm / MHz.
	In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the power density of each transmit chain shall be measured separately to calculate the total power density (value D in dBm / MHz) for the UUT.
	Step 5:
	The maximum spectral power density e.i.r.p. is calculated from the above measured power density D, the observed duty cycle x (see clause 5.4.4.2.1.1.2, step 1), the applicable antenna assembly gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the highest gain shall be used.
	$PD = D + G + Y + 10 \times log (1 / x) (dBm / MHz)$
Test mode:	Keep the EUT in transmitting mode with modulation.
Test Instruments:	Refer to section 6.0 for details
Measurement Record:	Uncertainty: ± 1.5dB

Measurement Data

Main antenna:

Mode:		802.11a(H	802.11a(HT20)			
Frequency (MHz)	Measured Power density (dBm/MHz)	Total Power density (dBm/MHz)	Limit (dBm/MHz)	Result		
5180.00	-4.26	2.33				
5200.00	-4.33	2.26	10.00	Pass		
5240.00	-4.42	2.17				

Remark:1>. Volt= Voltage, Temp= Temperature

- 2>. Duty cycle=99%, Cable loss=0.5dB, Antenna Gain=3.0dBi
- 3>. Total PSD = Measured PSD + Antenna Gain + 10 log (1/Duty Cycle)

Aux antenna:

7 tax antonna.					
Mode:		802.11a(H	802.11a(HT20)		
Frequency (MHz)	Measured Power density (dBm/MHz)	Total Power density (dBm/MHz)	Limit (dBm/MHz)	Result	
5180.00	-4.14	2.45			
5200.00	-4.56	2.03	10.00	Pass	
5240.00	-4.73	1.86			

Remark:1>. Volt= Voltage, Temp= Temperature

- 2>. Duty cycle=99%, Cable loss=0.5dB, Antenna Gain=3.0dBi
- 3>. Total PSD = Measured PSD + Antenna Gain + 10 log (1/Duty Cycle)

MIMO:

Mode:		(HT20)		
Frequency (MHz)	Measured Power density (dBm/MHz)	Total Power density (dBm/MHz)	Limit (dBm/MHz)	Result
5180.00	-4.43	2.16		
5200.00	-4.28	2.31	10.00	Pass
5240.00	-4.89	1.70		

Remark:1>. Volt= Voltage, Temp= Temperature

- 2>. Duty cycle=99%, Cable loss=0.5dB, Antenna Gain=3.0dBi
- 3>. Total PSD = Measured PSD + Antenna Gain + 10 log (1/Duty Cycle)

Mode:	de: 802.11n(HT20)						
Frequency (MHz)	Measured Power density (dBm/MHz)	Total Power density (dBm/MHz)	Limit (dBm/MHz)	Result			
5180.00	-4.35	2.24					
5200.00	-4.48	2.11	10.00	Pass			
5240.00	-4.63	1.96					

Remark:1>. Volt= Voltage, Temp= Temperature

- 2>. Duty cycle=99%, Cable loss=0.5dB, Antenna Gain=6.01dBi
- 3>. Total PSD = Measured PSD + Antenna Gain + 10 log (1/Duty Cycle)

Mode:		802.11ac	(HT40)	
Frequency (MHz)	Measured Power density (dBm/MHz)	Total Power density (dBm/MHz)	Limit (dBm/MHz)	Result
5190.00	-7.58	-0.99	10.00	Door
5230.00	-7.46	-0.87	10.00	Pass

Remark:1>. Volt= Voltage, Temp= Temperature

- 2>. Duty cycle=99%, Cable loss=0.5dB, Antenna Gain=6.01dBi
- 3>. Total PSD = Measured PSD + Antenna Gain + 10 log (1/Duty Cycle)

Mode:		802.11n(l	HT40)	
Frequency (MHz)	Measured Power density (dBm/MHz)	Total Power density (dBm/MHz)	Limit (dBm/MHz)	Result
5190.00	-7.63	-1.04	10.00	Door
5230.00	-7.49	-0.90	10.00	Pass

Remark:1>. Volt= Voltage, Temp= Temperature

- 2>. Duty cycle=99%, Cable loss=0.5dB, Antenna Gain=6.01dBi
- 3>. Total PSD = Measured PSD + Antenna Gain + 10 log (1/Duty Cycle)

Mode:			802.11ac	(HT80)	
Frequency (MHz)	Measured Power density (dBm/MHz)	Total Power density (dBm/MHz)		Limit (dBm/MHz)	Result
5210.00	-10.22	-3.6	63	10.00	Pass

Remark:1>. Volt= Voltage, Temp= Temperature

- 2>. Duty cycle=99%, Cable loss=0.5dB, Antenna Gain=6.01dBi
- 3>. Total PSD = Measured PSD + Antenna Gain + 10 log (1/Duty Cycle)

7.2.5 Transmitter unwanted emissions outside 5GHz RLAN band

Test Requirement:	EN 301893 clause 4.2.4.1
Test Method:	EN 301893 clause 5.4.5.2.2
Limit:	EN 301893 clause 4.2.4.1.2 table 4
Test setup:	Below 1GHz
	Antenna Tower Ground Reference Plane
	Test Receiver Pre-Amplifer Controller Above 1GHz
	Horn Antenna Tower Ground Reference Plane Test Receiver Amplifer Controller
Test procedure:	1. Pre-scan
	The test procedure below shall be used to identify potential unwanted emissions of the UUT.
	Step 1:
	The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in table 4. Step 2:
	The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:
	Resolution BW: 100 kHz
	Video BW 300 kHz
	Detector mode: Peak

Trace Mode: Max Hold Sweep Points: ≥ 9970

For spectrum analysers not supporting this number of sweep points, the frequency band may be segmented. For spectrum analysers capable of supporting twice this number of sweep points, the frequency adjustment in clause 5.4.5.2.1.2 (step 1, last bullet) may be

omitted

Sweep time: For non-continuous transmissions (duty cycle

less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT

EXAMPLE: For non-continuous transmissions, if the UUT

is using a test sequence as described in clause 5.3.1.1 with a transmitter on + off time of 2 ms, then the sweep time has to be greater

than 4 ms per 100 kHz.

Allow the trace to stabilize. Any emissions identified that have a margin of less than 6 dB with respect to the limits given in clause 4.2.4.1.2, table 4 shall be individually measured using the procedure in clause 5.4.5.2.1.2 and compared to the limits given in clause 4.2.4.1.2, table 4.

Step 3:

The emissions over the range 1 GHz to 26 GHz shall be identified. Spectrum analyser settings:

Resolution BW: 1 MHz

Video BW 3 MHz

Detector mode: Peak

Trace Mode: Max Hold

Sweep Points: ≥ 25000

For spectrum analysers not supporting this number of sweep points, the frequency band may be segmented. For spectrum analysers capable of supporting twice this number of sweep points, the frequency adjustment in clause 5.4.5.2.1.2 (step 1, last bullet) may be omitted.

Sweep time: For non-continuous transmissions (duty cycle

less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.

EXAMPLE: For non-continuous transmissions, if the UUT

is using a test sequence as described in clause 5.3.1.1 with a transmitter on + off time of 2 ms, then the sweep time has to be greater

than 4 ms per 1 MHz.

Allow the trace to stabilize. Any emissions identified that have a margin of less than 6 dB with respect to the limits given in clause 4.2.4.1.2, table 3 shall be individually measured using the procedure in clause 5.4.5.2.1.2 and compared to the limits given in clause 4.2.4.1.2, table 3.

2. Measurement of the emissions identified during the pre-scan

The limits for transmitter unwanted emissions in clause 4.5.1 refer to average power levels.

The steps below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above. Continuous transmit signals:

For continuous transmit signals, a simple measurement using the RMS detector of the spectrum analyser is permitted. The measured values shall be recorded and compared with the limits in clause 4.2.4.1.2, table 4.

Non-continuous transmit signals:

For non-continuous transmit signals, the measurement shall be made only over the "on" part of the burst.

Step 1:

The level of the emissions shall be measured using the following spectrum analyser settings:

Centre Frequency: Frequency of emission identified during the

pre-scan

Resolution BW: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)

Video BW 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)

Frequency Span: 0 Hz

Sweep mode: Single Sweep

Sweep time: Suitable to capture one transmission burst.

Additional measurements may be needed to identify the length of the transmission burst. In case of continuous signals, the Sweep Time

shall be set to 30 ms

Sweep points: Sweep time [µs] / 1 µs with a maximum of

30 000

Trigger: Video (burst signals) or Manual (continuous

signals)

Detector: RMS

Trace Mode: Clear/Write

Adjust the centre frequency (fine tune) to capture the highest level of one burst of the emission to be measured. This fine tuning can be omitted for spectrum analysers capable of supporting twice this number of sweep points required in step 2 and step 3 from the pre-scan procedure in clause 5.4.5.2.1.1.

Step 2:

Adjust the trigger level to select the transmissions with the highest power level.

Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function. If the spurious emission to be measured is a continuous signal, the measurement window shall be set to match the start and stop times of the sweep.

Select RMS power to be measured within the selected window and note

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	Report No.: GTS201807000209E04
	the result which is the RMS power of this particular spurious emission. Compare this value with the applicable limit provided by clause 4.2.4.1.2, table 4.
	Repeat this procedure for every emission identified during the pre-scan. The values and corresponding frequencies shall be recorded.
	In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements shall be repeated for each of the active transmit chains. Comparison with the applicable limits shall be done using either of the options given below:
	Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added and compared with the limits provided by table 3 in clause 4.2.4.1.2.
	Option 2: the results for each of the transmit chains shall be individually compared with the limits provided by table 3 in clause 4.2.4.1.2 after these limits have been reduced by 10 x log10 (Tch) (number of active transmit chains).
Test mode:	Keep the EUT in transmitting with modulation.
Test Instruments:	Refer to section 6.0 for details
Measurement Record:	Uncertainty: ±6dB

Measurement Data

Main antenna:

Mode:		802.11a		
F	Spurious	Emission	David (ID.)	T15 **
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5180MHz				
35.60	Vertical	-70.92	-36	
211.69	V	-70.45	-54	
10360.00	V	-47.06	-30	
15540.00	V	-51.04	-30	Dana
373.22	Horizontal	-67.96	-36	- Pass
517.34	Н	-69.63	-54	
10360.00	Н	-52.34	-30]
15540.00	Н	-48.50	-30	
Mode:	-	802.11a		
F (1811-)	Spurious	Emission	Limit (JDm)	To al Do avell
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5200MHz	•			•
33.60	Vertical	-67.52	-36	
216.39	V	-64.74	-54	
10400.00	V	-43.32	-30	
15600.00	V	-45.31	-30	Door
348.51	Horizontal	-66.95	-36	- Pass
762.17	Н	-65.91	-54	
10400.00	Н	-50.41	-30	
15600.00	Н	-49.72	-30	
Mode:		802.11a		
Francisco (MIII-)	Spurious	Emission	Limit (alDum)	Took Dooule
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5240MHz				
45.62	Vertical	-67.34	-36	
198.52	V	-65.93	-54	
10480.00	V	-43.14	-30	
15720.00	V	-44.02	-30	Page
349.45	Horizontal	-62.38	-36	- Pass
583.36	Н	-65.77	-54	
10480.00	Н	-44.91	-30	
15720.00	Н	-48.82	-30	

Aux antenna:

Aux antenna:				
Mode:		802.11a		1
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
r requericy (Miriz)	polarization	Level(dBm)	Lillit (dbill)	T COL T COUR
5180MHz				
97.64	Vertical	-63.81	-54.00	
525.44	V	-60.26	-54.00	
10360.00	V	-45.54	-30.00	
15540.00	V	-41.44	-30.00	- Pass
87.82	Horizontal	-61.31	-54.00	Pass
823.45	Н	-62.96	-54.00	
10360.00	Н	-45.75	-30.00	
15540.00	Н	-42.52	-30.00	
Mode:	·	802.11a		
F	Spurious	Emission	Limit (ID)	To at Danielt
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5200MHz	·			
74.85	Vertical	-64.38	-36.00	
665.58	V	-66.75	-54.00	
10400.00	V	-49.43	-30.00	
15600.00	V	-44.28	-30.00	D
80.21	Horizontal	-66.03	-36.00	- Pass
152.48	Н	-67.47	-54.00	
10400.00	Н	-49.49	-30.00	
15600.00	Н	-45.19	-30.00	
Mode:		802.11a		
_	Spurious	Emission		
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5240MHz	<u> </u>	, , ,		1
108.52	Vertical	-67.23	-54.00	
456.82	V	-63.44	-54.00	Pass
10480.00	V	-48.39	-30.00	
15720.00	V	-43.93	-30.00	
87.69	Horizontal	-64.55	-54.00	
235.43	Н	-65.84	-54.00	
10480.00	Н	-48.24	-30.00	-
15720.00	Н	-44.68	-30.00	

MIMO:

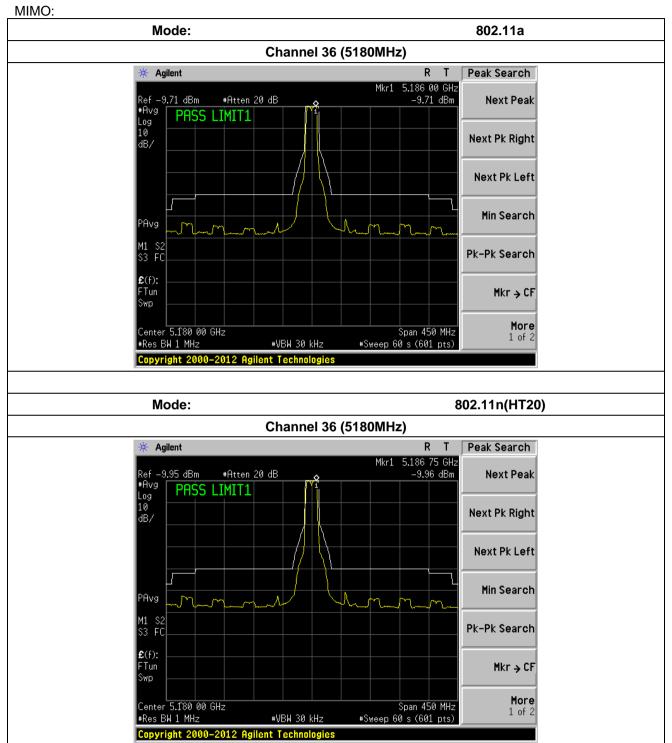
Mode:		802.11ac(H	IT20)	
P	Spurious	Emission	•	T(D)
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5180MHz	-			•
61.69	Vertical	-68.88	-54.00	-
436.39	V	-65.47	-36.00	
10360.00	V	-41.25	-30.00	
15540.00	V	-43.64	-30.00	1 _
146.63	Horizontal	-67.61	-36.00	- Pass
628.29	Н	-63.26	-54.00	
10360.00	Н	-43.54	-30.00	1
15540.00	Н	-43.80	-30.00	1
Mode:	•	802.11ac(H	IT20)	•
F(8411-)	Spurious	Emission	Limit (dBm)	To al Daniell
Frequency (MHz)	polarization	Level(dBm)		Test Result
5200MHz	•			
232.39	Vertical	-70.32	-54.00	_
801.25	V	-61.79	-54.00	
10400.00	V	-41.76	-30.00	
15600.00	V	-43.11	-30.00	- Pass
113.25	Horizontal	-67.67	-36.00	Pa55
594.36	Н	-60.75	-54.00	
10400.00	Н	-42.90	-30.00	
15600.00	Н	-43.58	-30.00	
Mode:		802.11ac(H	IT20)	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
Frequency (MHZ)	polarization	Level(dBm)	Lilliit (dbill)	rest Result
5240MHz				
67.38	Vertical	-69.81	-54.00	
354.04	V	-66.68	-36.00	Pass
10480.00	V	-50.73	-30.00	
15720.00	V	-43.87	-30.00	
96.56	Horizontal	-67.78	-54.00	
686.25	Н	-67.18	-54.00	
10480.00	Н	-49.77	-30.00	
15720.00	Н	-43.34	-30.00	

Mode:		802.11n(H	Г20)	
France (\$411-)	Spurious	Emission	Limit (-ID)	Took Decorit
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5180MHz				
124.77	Vertical	-68.95	-36.00	
486.52	V	-61.64	-36.00	
10360.00	V	-50.45	-30.00	
15540.00	V	-43.23	-30.00	D
102.52	Horizontal	-68.17	-54.00	- Pass
665.52	Н	-70.09	-54.00	
10360.00	Н	-49.69	-30.00	
15540.00	Н	-43.77	-30.00	
Mode:		802.11n(H	Г20)	1
_ (1.1.)	Spurious	Emission		
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5200MHz				
174.25	Vertical	-68.22	-36.00	
636.42	V	-62.84	-54.00	
10400.00	V	-51.13	-30.00	
15600.00	V	-43.45	-30.00	- Pass
148.53	Horizontal	-68.41	-54.00	Pass
685.25	Н	-60.74	-54.00	
10400.00	Н	-51.08	-30.00	
15600.00	Н	-44.41	-30.00	
Mode:		802.11n(H	Γ20)	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
Frequency (WIFI2)	polarization	Level(dBm)	Lillill (dBill)	rest Result
5240MHz				
245.25	Vertical	-67.59	-36.00	
874.53	V	-64.55	-36.00	Pass
10480.00	V	-50.64	-30.00	
15720.00	V	-42.47	-30.00	
122.58	Horizontal	-70.39	-36.00	F d 5 5
763.43	Н	-69.87	-36.00	
10480.00	Н	-49.30	-30.00	
15720.00	Н	-44.93	-30.00	

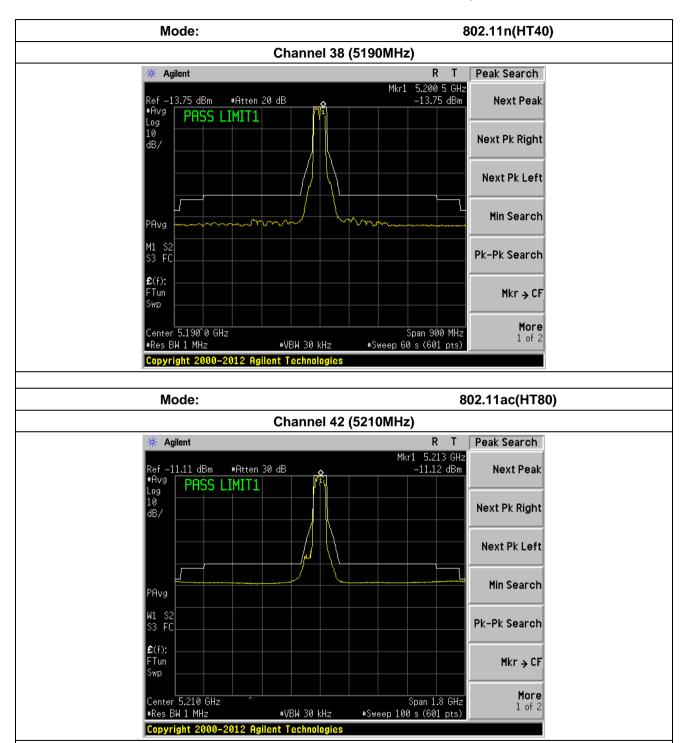
Mode:		802.11ac(F	łT40)	
F(8411-)	Spurious	Spurious Emission		T 15 11
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5190MHz				
83.96	Vertical	-68.00	-36.00	
458.63	V	-59.00	-36.00	1
10380.00	V	-50.92	-30.00	
15570.00	V	-43.72	-30.00	- Pass
123.54	Horizontal	-66.84	-36.00	Pass
688.25	Н	-61.94	-54.00	1
10380.00	Н	-50.62	-30.00	
15570.00	Н	-43.90	-30.00]
Mode:	•	802.11ac(F	IT40)	
Francisco (MIII-)	Spurious Emission		Limit (dPm)	Took Dooule
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5230MHz				
87.92	Vertical	-67.70	-54.00	
773.52	V	-60.97	-54.00	
10460.00	V	-50.71	-30.00	
15690.00	V	-44.04	-30.00	Pass
17320	Horizontal	-65.37	-36.00	
582.05	Н	-62.60	-54.00	
10460.00	Н	-48.82	-30.00	1
15690.00	Н	-44.46	-30.00	

Mode:		802.11ac(l	HT80)	
Frague ou (MIII-)	Spurious Emission		1: :: (15.)	To at Danielt
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5210MHz				
85.25	Vertical	-68.56	-36.00	
335.54	V	-65.19	-36.00	
10420.00	V	-40.97	-30.00	
15630.00	V	-43.28	-30.00	- Pass
159.85	Horizontal	-67.28	-36.00	Pass
587.24	Н	-62.95	-54.00	1
10420.00	Н	-43.26	-30.00	
15630.00	Н	-43.45	-30.00	

Mode:		802.11n(HT	T40)	
F(8411-)	Spurious	Emission	Limit (IDm)	Total Decorate
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5190MHz	-			1
124.55	Vertical	-70.00	-36.00	
684.15	V	-61.51	-54.00	
10380.00	V	-41.48	-30.00	
15570.00	V	-42.75	-30.00	D
245.63	Horizontal	-67.34	-36.00	Pass
498.58	Н	-60.44	-54.00	
10380.00	Н	-42.62	-30.00	-
15570.00	Н	-43.23	-30.00	
Mode:		802.11n(HT	Γ 40)	
F(8411-)	Spurious Emission		Limit (JDms)	Tool Dooule
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
5230MHz				
80.05	Vertical	-69.49	-36.00	
345.21	V	-66.40	-36.00	
10460.00	V	-50.45	-30.00	- Pass
15690.00	V	-43.51	-30.00	
108.90	Horizontal	-67.45	-54.00	
548.25	Н	-66.87	-54.00	
10460.00	Н	-49.49	-30.00	
15690.00	Н	-42.99	-30.00	



7.2.6 Transmitter unwanted emissions within 5GHz RLAN band


Test Requirement:	EN 301893 clause 4.2.4.2				
Test Method:	EN 301893 clause 5.4.6.2.2				
Limit:	EN 301893 clause 4.2.4.2.2 Figure 1				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Temperature Chamber Ground Reference Plane				
Test procedure:	The UUT shall be configured for continuous transmit mode (duty cycle				
	equal to 100 %). If this is not possible, then option 2 shall be used.				
	Step 1: Determination of the reference average power level.				
	Spectrum analyser settings:				
	Resolution BW: 1 MHz				
	Video BW: 30 kHz				
	Detector Mode: Peak				
	Trace Mode: Video Average				
	Sweep time: Coupled				
	Center Frequency: Centre frequency of the channel being tested				
	Span: 2 × Nominal Channel Bandwidth				
	Use the marker to find the highest average power level of the power envelope of the UUT. This level shall be used as the reference level for the relative measurements.				
	Step 2: Determination of the relative average power levels.				
	Adjust the frequency range of the spectrum analyser to allow the measurement to be performed within the sub-bands 5 150 MHz to 5 350 MHz and 5 470 MHz to 5 725 MHz. No other parameter of the spectrum analyser should be changed.				
	Compare the relative power envelope of the UUT with the limits defined in clause 4.2.4.2.2.				
Test mode:	Keep the EUT in transmitting with modulation.				
Test Instruments:	Refer to section 6.0 for details				
Measurement Record:	Uncertainty: ±6dB				

Measurement Data

Note1: When we test the channel 5180MHz, the right noises of the signal are lower than -47dBc, and satisfy the 5470-5725MHz band MASK.

7.3 Receiver Requirements

7.3.1 Receiver Spurious emissions

Test Requirement:	EN 301893 clause 4.2.5				
Test Method:	EN 301893 clause 5.4.7.2.2				
Pagaivar satura	Frequency<1000MHz; RBW=100KHz	z, VBW=300KHz, Detector= peak			
Receiver setup:	Frequency>=1000MHz; RBW=1MHz,	, VBW=3MHz, Detector=peak.			
Limit:	Frequency	Limit			
	30MHz to 1000 MHz	2nW(-57dBm)			
	Above 1GHz	20nW(-47dBm)			
Test Frequency range:	30MHz to 26GHz				
Test setup:	Below 1GHz				
	AE EUT 3m Ground Reference Plane	Antenna Tower			
	Above 1GHz	Pre-Amplifier Controlles			
	AE EUT 3m Ground Reference Plane	Horn Antenna Tower			
	Test Receiver	Pre-Amplifer Controller			
Test procedure:	Substitution method was performed to emission levels of the EUT. The following test procedure as below				
	1>.Below 1GHz test procedure:				
	On the test site as test setup graph the 1.5m support on the turntable a	n above, the EUT shall be placed at and in the position closest to normal			

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	Report No.: GTS201807000209E04
	use as declared by the provider.
	 The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) where:
	Pg is the generator output power into the substitution antenna.
	2>.Above 1GHz test procedure:
	Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.
Test mode:	Kept Rx in receive mode.
Test Instruments:	Refer to section 6.0 for details
Measurement Record:	Uncertainty: ± 6dB

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Measurement Data

Remark: All of the mode w	ere tested, only the		MIMO RX was shows bel	OW.	
Mode:	1	802.11a			
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result	
r requeries (initiz)	polarization	Level(dBm)	Limit (dbiii)		
Channel 36 (5180MHz)					
87.15	Vertical	-70.89			
625.44	V	-66.78	2nW/ -57dBm,		
10360.00	V	-63.22	Below 1GHz		
15540.00	V	-58.47		Pass	
105.36	Horizontal	-70.53		Pass	
535.76	Н	-66.64	, 20nW/ -47dBm,		
10360.00	Н	-61.99	Above 1GHz		
15540.00	Н	-55.88			
Mode:		802.11n(H	IT40)		
- (2411.)	Spurious	Spurious Emission		T 15 1	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result	
Channel 38 (5190MHz)		1	1		
80.25	Vertical	-72.46			
591.33	V	-65.58	2nW/ -57dBm,	Pass	
10380.00	V	-63.20	Below		
15570.00	V	-58.41	1GHz		
165.84	Horizontal	-70.43			
511.52	Н	-64.13			
10380.00	Н	-62.63	Above 1GHz		
15570.00	Н	-55.87	ABOVE TOTIZ		
Mode:		802.11ac(HT80)		
- (A411.)	Spurious	Emission	1: '(/15.)	T 15 1	
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result	
Channel 36 (5180MHz)	•		<u>, </u>		
97.58	Vertical	-71.86			
742.24	V	-65.75	2nW/ -57dBm,		
10420.00	V	-64.92	Below 1GHz		
15630.00	V	-58.27]		
211.25	Horizontal	-71.61]	Pass	
482.63	Н	-64.71	, 20nW/ -47dBm,		
10420.00	Н	-61.85	Above 1GHz		
15630.00	Н	-58.64	1		

7.3.2 Receiver Blocking

Test Requirement:	ETSI EN 300 3	ETSI EN 300 328 clause 4.2.8					
Test Method:	ETSI EN 300 3	ETSI EN 300 328 clause 5.4.10.2					
Limit:	4.2.8.3, the blo	While maintaining the minimum performance criteria as defined in clause 4.2.8.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined in table 9. Table 9: Receiver Blocking parameters					
	Wanted signal mean power	Blocking signal frequency		al power (dBm) note 2)	Type of blocking		
	from companion device (dBm)	(MHz)	Master or Slave with radar detection (see table D.2, note 2)	Slave without radar detection (see table D.2, note 2)	signal		
	Pmin + 6 dB	5 100	-53	-59	Continuous Wave		
	Pmin + 6 dB	4 900 5 000 5 975	-47	-53	Continuous Wave		
	NOTE 2: The level	s specified are leve ments, the same lev	Is in front of the UUT	he absence of any blo antenna. In case of c it the antenna connec	onducted		
Test setup:	Signalin or Compa Devi	anion ice ATT ATT ATT ATT ATT ATT ATT ATT ATT AT	Splitter/ Combiner Splitter/ Combiner Signature of the splitter of the split		Performance Monitoring Device		
Test procedure:	tested. All othe Step 1: • The UUT shal clause 5.3.2). Step 2: • The blocking stable 9. Step 3: • With the block set up between test setup show shall be increas performance cr resulting level f	r receiver input receiver input II be set to the signal generated the UUT and who in figure 18 sed in 1 dB step iteria as specifor the wanted well (Pmin) is income.	first operating for is set to the formal or is set to the formal of the associated. The attenuation operator a value arrived in clause 4 signal at the ingreased by 6 dB	requency to be a sirst frequency as a sirst frequency as a soft of the variable to the which the minimates of the UUT is resulting in a new sirst of the uut of the u	tested (see s defined in cation link is ce using the attenuator mum . The s P _{min} .		

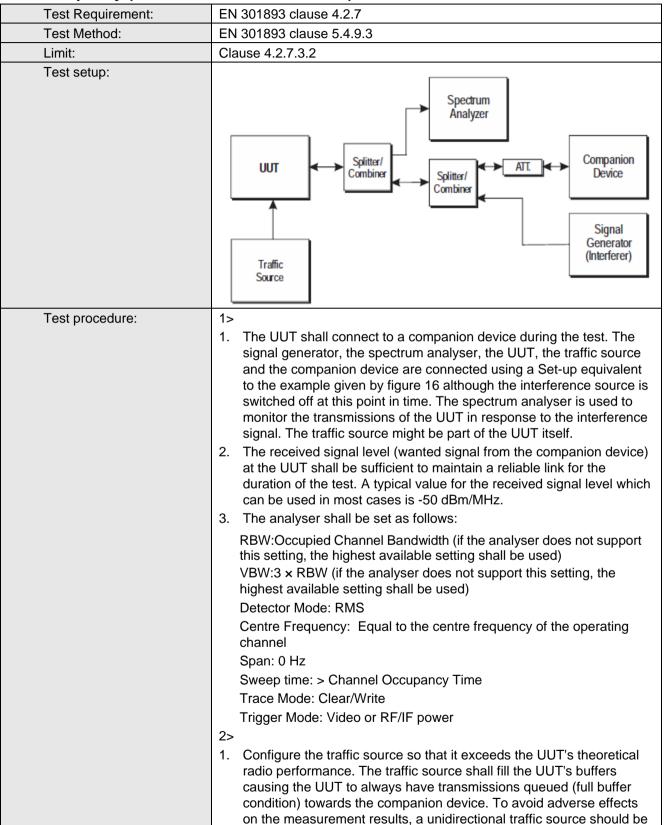
Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	Report No.: GTS201807000209E04
	provided in table 9. It shall be verified and recorded in the test report that the performance criteria as specified in clause 4.2.8.3 are met. • If the performance criteria as specified in clause 4.2.8.3 are met, the level of the blocking signal at the UUT may be further increased (e.g. in steps of 1 dB) until the level whereby the performance criteria as specified in clause 4.2.8.3 are no longer met. The highest level at which the performance criteria are met is recorded in thetest report. Step 5: • Repeat step 4 for each remaining combination of frequency and level as specified in table 9. Step 6: • Repeat step 2 to step 5 with the UUT operating at the other operating frequencies at which the blocking test has to be performed. See clause 5.3.2.
Measurement Record:	Uncertainty: N/A
Test mode:	Normal link mode
Test Instruments:	Refer to section 6.0 for details

Measurement Data:


Test Channel	P _{min} (dBm)	PER(%)	Limit of PER(%)	Wanted signal mean power companion (P _{min} +6dB)	Blocking signal frequency (MHz)	Blocking signal Power (dBm)	Type of blocking signal	Result
				-80.40	4900.00	-47		
Lowest Channel	-86.40	9.42		-80.40	5000.00	-47		
Onamor			10	-80.40	5100.00	-35	CW	Pass
Highest Channel	-85.10	9.37		-79.10	5975.00	-47		

Note: During the blocking test. The value of PER which display on the CMW 500 was no changed. Maybe the value of PER has a slight floating, but no bigger than 10%.

Remark: According to ETSI EN 301893 V2.1.0 clause 5.4.10.1. Only the lowest data rate of 802.11a mode was tested and recorded.

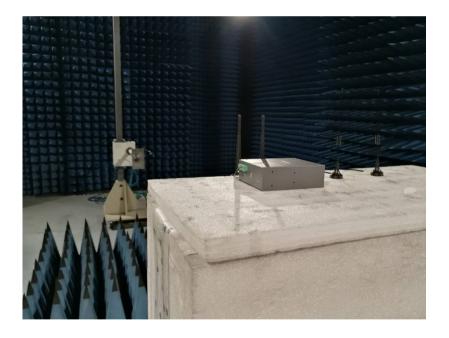
7.4 Adaptivity (Channel Access Mechanism)

	Report No.: GTS201807000209E04
	 used. An example of such a unidirectional traffic source not triggering reverse traffic on higher layer protocols is UDP. Clause 5.4.9.3.2.2 is the procedure using to verify the capability to detect other RLAN transmissions on the operating channel when operating on a single channel
	3> Adding the interference signal
	One of the three interference signals as defined in clause B.7 is injected on the current Operating Channel of the UUT. The bandwidth of this signal shall be such that it covers the current Operating Channel. The level (at the input of the UUT) of this interference signal shall be equal to the applicable ED Threshold Level (TL) defined in clause 4.2.7.3.2.5.
	4> Verification of reaction to the interference signal.
	 The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel after the interference signal was injected. This may require the spectrum analyser sweep to be triggered by the start of the interfering signal.
	2. Using the procedure defined in clause 5.4.9.2.2, it shall be verified that:
	3. The UUT stops transmissions on the current operating channel. The UUT is assumed to stop transmissions within a period equal to the maximum channel occupancy time that corresponds to the priority class being tested (see table 7 and table 8). The UUT is allowed to have short control signalling transmissions on the current operating channel, see ii) and iii).
	 Apart from Short Control Signalling Transmissions there shall be no subsequent transmissions while the interfering signal is present. The Short Control Signalling Transmissions shall comply with the
	limits defined in clause 4.2.7.3.3. The verification of the Short Control Signalling Transmissions may require the analyser settings to be changed (e.g. sweep time). 6. To verify that the UUT is not resuming normal transmissions as long
	as the interference signal is present, the monitoring time may need to be 60 s or more, in which case a segmented measurement may need to be performed in order to achieve the required resolution.
	7. Once the test is completed and the interference signal is removed, the UUT may start transmissions again on this channel however this is not a requirement and therefore does not require testing.
	Step 2 and step 3 shall be repeated for each of the interference signals defined in clause B.7.
Test mode:	Keep the EUT in transmitting mode with modulation.
Test Instruments:	Refer to section 6.0 for details
Measurement Record:	Uncertainty: ± 1.5dB

Note: According to ETSI EN 301 893 V2.1.1 Annex B(B7). All of AWGN&OFDM. And found the AWGN signal was the worst case. So only this case was recorded on the report.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Only the worst-case shows below:


MIMO:

802.11ac(HT40) mode lowest channel		802.11ac(H80) mode middle channel		
AWGN Interference Level (dBm)	-63.24	AWGN Interference Level (dBm)	-64.53	
AWGN Interference Start Time (ms)	10077.21	AWGN Interference Start Time (ms)	10211.42	
Max COT (ms)	0.28	Max COT (ms)	0.90	
DIFS/PIFS width (ms)	0.158	DIFS/PIFS (ms)	0.143	
Duty Cycle (%)	0.00	Duty Cycle (%)	0.00	
Adaptivity Measurement	COV. ADAPT Test Det. Cover of Man. Cover of Man.	Adaptivity Measurement 10.0	Prince (diffe) Prince (diffe) PA Prince P	
COT Time One One One One One One One O	The state of the s	COT Time (ma) 1 0.90	Prince (dire)	
Outy Cycle Outy Cycle Outy Cycle Outy Cycle Outy Cycle Out Service Servic	Proceed Gallery	Outy Cycle Outy Outy Outy Outy Outy Outy Outy Out	The section of section is	
DIFS / PIFS Tirrue State of the property of t	Process (allend) 1 Process (allend) 1 Process (allend) 1 Tr. OO	Corps / Pips Time Corps / Pips	Notice (disc)	

8 Test Setup Photo

9 EUT Constructional Details

Reference to the test report No.: GTS201807000209E01

-----End-----